
Fact-Based Question Decomposition for Candidate
Answer Re-Ranking

Aditya Kalyanpur Siddharth Patwardhan Branimir Boguraev
Adam Lally Jennifer Chu-Carroll

IBM T.J.Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

{adityakal,siddharth,bran,alally,jencc}@us.ibm.com

ABSTRACT

Factoid questions often contain one or more assertions (facts)
about their answers. However, existing question-answering
(QA) systems have not investigated how the multiple facts
may be leveraged to enhance system performance. We ar-
gue that decomposing complex factoid questions can benefit
QA, as an answer candidate is more likely to be correct if
multiple independent facts support it. We categorize de-
composable questions as parallel or nested, depending on
processing strategy required. We present a novel decompo-
sition framework—for parallel and nested questions—which
can be overlaid on top of traditional QA systems. It con-
tains decomposition rules for identifying fact sub-questions,
a question-rewriting component and a candidate re-ranker.
In a particularly challenging domain for our baseline QA
system, our framework shows a statistically significant im-
provement in end-to-end QA performance.

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—text analysis, language parsing and understanding

General Terms

Algorithms, Design

Keywords

Question Answering, Question Decomposition

1. INTRODUCTION
We look at complex factoid questions, specifically ones

which contain multiple facts related to the correct answer,
as in e.g. Which company with origins dating back to 1876
became the first U.S. company to have 1 million stockholders
in 1951?. Two facts of relevance here are the time-frame of
the company’s origins, and it becoming the first to reach a
particular landmark. We use the decomposed facts to garner

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

independent, but potentially mutually-reinforcing, support
for the correct answer from independent sources of evidence.

Recent approaches to QA acknowledge that some ques-
tions need decomposing, to tease out information beyond
what“single-shot”QA systems generally assume. They tend
to defer to discourse and/or semantics of the question, and
use complex processes like textual entailment [4], question
refocusing [2, 3], or temporal/spatial analysis [6, 2]. De-
composition work has mostly looked at “beyond factoid”
questions. In contrast, we develop decomposition to im-
prove quality of QA for a broad set of factoids. The ques-
tions we use (from the popular TV quiz show Jeopardy!)
cover numerous topics, and make for an excellent test bed
for open-domain QA.1

Our definition of “decomposable” questions—containing
independent support for the correct answer—leads to cat-
egorizing such questions into parallel and nested. The ex-
ample above, and an example from our data—This coun-
try singer who did time in San Quentin was pardoned by
Governor Ronald Reagan—are parallel decomposable: sub-
questions can be evaluated independently of one another.
In contrast, nested questions require sequential processing,
with the answer to an ‘inner’ sub-question plugged into the
‘outer’: It was named for Britain’s last Stuart monarch, who
gave the city its charter in 1708. In this work we develop a
uniform framework for handling decomposable questions of
both types, and demonstrate that it is capable of improving
the end-to-end performance of a state-of-the-art QA system.

2. FACT-BASED DECOMPOSITION
A single-shot QA system may find answers whose support-

ing evidence satisfies only some of the question’s facts, and
ignores the remainder of the question. At the same time,
looking at all question terms as a whole, instead of sepa-
rate meaningful facts, may distract the search for candidate
answers. For nested decomposable questions, the missing
piece of information implied by the ‘inner’ fact is often a
facilitator to obtaining the correct answer. We would like
to be able to enhance such single-shot systems so they can
decompose questions (when appropriate) and identify parts
thereof to be further processed, in parallel or in sequence.

Figure 1 shows the high-level architecture of such an adap-
tation. Ours is a “meta” framework overlaid on top of an
existing QA system. It can be conceptualized around four
main components.

1In this data, questions are posed in a declarative format,
with highly stylized marking of question focus. This should
not detract from referring to them as ‘questions’.

CIKM '11: Proceedings of the 20th ACM International.

Conference on Information and Knowledge Management,.

Glasgow, UK, October 2011.

��������

	
����

����
���

	
����

����
���

���
�

�����������

	
����

����
���

Figure 1: Fact-Based Decomposition Framework

Decomposition Recognizers analyze the question and iden-
tify decomposable parts (facts) using largely lexico-syntactic
cues (Section 3). Question Rewriters reformulate the facts
as sub-questions, adding key contextual information (Sec-
tion 4.1). Underlying QA System generates, for any factoid
question, a ranked list of answer candidates, each with a con-
fidence corresponding to the probability of the answer being
correct [1]. Candidate Re-rankers combine ranked answers
to the original question with solutions for the decomposed
facts (sub-questions) and generate a uniformly ranked an-
swer list. Candidate answer confidences are used either by a
machine learning-based approach or by a heuristic selection
strategy to do the final ranking (Section 4.2).

We use the QA system described in [1]. However, our
meta-framework will host any system that satisfies two cri-
teria: it can solve factoid questions by providing answers
with confidences reflecting their probability of being cor-
rect; it can separate the question’s topic information from
its main content by weighing the former less than the latter.

The figure highlights the distinction between parallel and
nested processing: the parallel decomposition components
produce multiple (two or more) sub-questions, submitted to
the underlying QA system; the nested components generate
inner-outer sub-question pairs, processed via a feedback loop
re-invoking the underlying QA capability.

3. DECOMPOSITION RECOGNIZERS
Finding the question segments representative of indepen-

dent facts about the correct answer is not trivial: multiple
facts can be ‘weaved’ into a single complex question in a va-
riety of ways: modifiers to the focus2, subordinate clauses,
attached prepositional phrases, may all be expressing facts.
From a fact-checking perspective, we consider facts to be
expressions of relations between the focus and one or more
entities (named entities, dates or quotations) as these tend

2The focus is the part of the question referring to the answer.

to be more substantial or meaningful. This, coupled with a
set of syntactic cues we have found to be reliable indicators
for decomposition, allows us to generalize recognition rules
for question decomposition.

3.1 Decomposition Rules
Our rules exploit fine-grained lexico-syntactic information,

and fall within three major categories: independent subtrees,
composable units and segments with qualifiers. The rules in
each rule set target both parallel and nested configurations.
Details of rule sets fall outside of the scope of this paper; be-
low we outline some highlights, as representative examples.

Independent Subtrees: Intuitively, potentially in-
dependent facts—capturing unique information about the
answer—would be in clauses distinct from the rest of the
question: e.g. relative or subordinate constructions. In the
absence of more focused contextual information (see below),
such configurations are indicative of parallel decomposition.
The syntactic labels connecting such subtrees to the focus
are generally good indicators for “breaking away” a subtree
from the question as a decomposable fact. Thus in The
name of this character, first introduced in 1894, comes from
the Hindi for “bear”, an independent fact about the answer is
“this character, introduced in 1894” (note that “this charac-
ter”is the focus). This category also triggers on conjunctions
as decomposition points, as in Its original name meant “bit-
ter water” and it was made palatable to Europeans after the
Spaniards added sugar.

Configurational information, reinforced by lexical cues, is
used to determine the question’s decomposition profile, par-
allel or nested. The syntactic contour of the first example
in this section shows that both the main and subordinate
clauses characterize the (same) focus entity: a clear indica-
tor that the sub-questions are parallel. Conversely, A con-
troversial 1979 war film was based on a 1902 work by this
author exhibits a very different set of configurational prop-
erties. The focus is just one of several underspecified entities
which do not ‘share’ their facts (e.g. via a common head).
This is indicative of nestedness, with the inner sub-question
around an unspecified, non-focus element (“a controversial
1979 war film”), and the outer taken from the complement
of the original question (“[film] was based on a 1902 work
by this author”). Nested decomposition returns a pair of
sub-questions; but there may be more than one way to de-
compose into an inner-outer.

Composable Units: An alternate strategy for identify-
ing facts is to “compose” them by combining elements from
the question. In contrast to “breaking off” independent sub-
trees, rules in this set combine different parts of the tree
into a sub-question. For instance, the focus with its pre-
and post-modifiers (if they are sufficiently specific) can be
interpreted as separate, parallel, fact(s). Alternatively, find-
ing the focus itself in a modifier position may be a signal of
nestedness: in To honor his work, this man’s daughter took
the name Maria Celeste when she became a nun in 1616,
the focus is dominated by an underspecified node, “daugh-
ter”. Traversing such a tree without descending to focus
level “carves out” an inner sub-question, itself focused on
the dominating (linking) node: “To honor his work, [this]
daughter took the name Maria Celeste ...”.

Segments with Qualifiers: This group of rules de-
tects focus modifiers which are relative qualifiers: “the first”,

“only”, “the westernmost”. Such qualifiers need to be “com-
pleted” by information from elsewhere: “the third man” is
meaningless without a supporting clause, e.g.“the third man
. . . to climb Mt. Everest”. The rules here combine character-
istics of the other two rule sets, to manipulate independent
subtrees and compose them with modifiers to the focus.

3.2 Decomposition Filters
Several heuristic filters reduce over-generation; primarily,

they discard facts that do not contain a named entity, a
quoted string, or a temporal (time or date) expression—this
is in line with our definition of fact, earlier in this section.

We also discard facts with significant overlap with the
entire question, or with other facts from previously applied
rules. This is based on a (partial order) prioritization of
rules, reflecting intuitions (borne by inspecting rule results)
of how informative the facts generated by the rule are.

4. USING DECOMPOSITION

4.1 Sub-question Rewriting
Submitting a decomposed sub-question, as-is, to the un-

derlying QA system meets serious problems: sub-questions
are often much shorter than the original, and tend to not
have a unique answer. Moreover, some of the information
from the full question that was dropped in the sub-question
may offer relevant contextual cues crucial for coming up with
the correct answer. In extreme cases, loss of context may
lead to recall failures—thus defeating the whole purpose of
decomposing in the first place.

Sub-question rewriting provides such crucial contextual
information. For a sub-question Qi, we first obtain the set of
all named entities and nouns (minus stopwords) in the origi-
nal question text that are not present in Qi. We then insert
these keywords into the topic of the original question.3 Fi-
nally, the underlying QA system is given the enriched topic/
sub-question pair; recall that our decomposition framework
(Section 2) expects to be able to take advantage of the dif-
ferential weighting of information in a question’s topic and
content. Sub-question rewriting thus ensures that the larger
context of the original question is still taken into account
when evaluating a sub-question, although with less weight.

4.2 Candidate Re-ranking
The different decomposition regimes require different stra-

tegies for using the sets of candidate answers, with confi-
dences. In the parallel case, a final set of uniformly ranked
answers needs to be composed from the set of ranked answer
lists produced by independently solving the sub-questions.
In the nested case, a subset of the answer list to the inner
sub-question needs to be selected for substitution into the
outer.

Parallel Decomposition A simple approach to assign-
ing a final score for each candidate answer is to multiply
scores for each of the sub-questions—given the assumption
that they are independent. However, sub-question rewriting
breaks this assumption. Also, different decomposition rules
have different precision and recall: thus sub-questions ought
not to be weighed equally. In the extreme case of rules pro-
ducing bad decompositions, it makes sense to fall back to

3Jeopardy! questions topics are confined to a category field.

the original question: therefore the confidence of the ‘single-
shot’ pass (Figure 1) should also inform the final decision.
Consequently, we train a machine learning model to combine
information across sub-question answer confidences.

To capture this range of information, the model uses the
following features: whether a candidate was a top answer to
the full (non-decomposed) question; confidence value for a
candidate answer to full question; number of sub-questions
with candidate answer in top 10; and a feature for every
(parallel) rule set, whose value is the confidence of the can-
didate answer for a fact derived by this rule set.

If a candidate answer is not in the answer list of the full
question or any of the decomposed sub-questions, the cor-
responding feature value is set to missing. If a rule pro-
duces multiple sub-question, the corresponding (rule) fea-
ture value for the candidate answer is set to the sum of
the confidences obtained for that answer across all the sub-
questions. For the machine-learning algorithm, we use the
Weka implementation [7] of logistic regression with instance
weighting (weights are tuned over the development set).

Nested Decomposition Each candidate answer from
the inner sub-question’s answer list, if substituted into the
outer sub-question, has ramifications on end-to-end accu-
racy: incorrect answers from the inner lead to incorrect final
answers. We rely on the ability of the underlying QA sys-
tem to produce meaningful confidences for its answers. Thus
only the top answer to the inner sub-question is considered
for substitution in the outer—if its confidence exceeds some
threshold (obtained by tuning over the development set).

With an answer to the inner sub-question, we are now in
a position to rewrite the outer. Similar to the case for par-
allel sub-questions, we also adhere to the policy of provid-
ing additional relevant contextual information to the system
(cf. Section 4.1).

A simple heuristic strategy appeals to joint probability of
the inner-outer pair to perform candidate re-ranking: the
confidence of the top answer to the outer sub-question is
multiplied with that of the top answer to the inner question;
the product is compared with the top-ranking confidence for
the full question; the answer with the higher confidence is
selected as final.

5. EVALUATION

5.1 Data
Our data set—with ground truth for both training a sys-

tem and evaluating its performance—is a collection of Jeop-
ardy! question-answer pairs (from www.j-archive.com). Given
our focus on question decomposition, only Final Jeopardy!
(FJ) questions are in our test set: they tend to be complex,
with multiple constraints, and typically much harder to an-
swer (for humans and the underlying QA system alike). Ap-
proximately 3000 FJ questions are split into 1138 for train-
ing, 517 for development and 1269 for testing (blind data).

5.2 Experiments
The parallel decomposition rules were defined and tuned

on the development set of 517 questions. The final re-ranking
model (with features as in Section 4.2) was built over our FJ
training set (Section 5.1). It was trained for logistic regres-
sion with instance re-weighting, setting the negative instance
weight 0.25 times lower (based on analysis over the develop-

QA End-to-End Decomposable Q
System Accuracy Accuracy
PB 635/1269 (50.05%) 339/598 (56.68%)
PD-QR 634/1269 (49.96%) 338/598 (56.52%)
PD+QR 643/1269 (50.66%) 347/598 (58.02%)
NB 635/1269 (50.05%) 129/255 (50.58%)
ND+QR 640/1269 (50.43%) 134/255 (52.54%)

Table 1: Evaluating Decomposition

ment set, and motivated by the underlying QA system’s ten-
dency to generate many more negative answers than positive
ones). To determine the impact of our context-preserving
sub-question rewriting strategy (Section 4.1), we modified
the algorithm to issue the sub-question as-is, using the orig-
inal category (topic). The results of applying the parallel
decomposition rules followed by the re-ranking model to the
1269 test questions are shown in Table 1.

In the table, PB refers to Parallel Baseline (the perfor-
mance of the underlying QA system with decomposition dis-
abled), NB refers to Nested Baseline (same configuration as
PB but separately run on nested decomposable questions),
PD and ND refer to Parallel and Nested Decomposition sys-
tems respectively, and QR refers to Question Rewriting.

Nested decomposition strategy (Section 4.2) was similarly
evaluated, comparing the (nested) baseline to a heuristic re-
ranking approach (whose parameter thresholds were tuned
on the development set). Results are also in Table 1.

5.3 Discussion of Results
Table 1 shows the parallel decomposition rules applying to

a large fraction of the test set (598 out of 1269 questions).
Interestingly, the performance of the baseline QA system
on the decomposable set is 56.6%, i.e. 6% higher than the
overall performance. One reason for this is that parallel-
decomposable questions typically contain more information
(more than one fact/constraint to be satisfied by the answer)
and the system can, in some cases, exploit this redundancy
(e.g. when a fact is strongly associated with the correct an-
swer and there is evidence in the sources supporting this).

Decomposition without sub-question rewriting does not
show much impact over the baseline: question context is
clearly crucial for QA. With rewriting to maintain context,
our parallel decomposition algorithm achieves an improve-
ment of 1.4% (10 gains/2 losses) on the decomposable ques-
tion set, which translated to an end-to-end gain of 0.6%.

The nested decomposition rules fired on roughly a fourth
of the test set (255 out of 1269 questions); the performance
of the baseline QA system on the nested decomposable set
was roughly the same as the overall performance (and much
lower than the parallel decomposable cases). The likely ex-
planation is that nested questions are harder to solve than
parallel: correct solution to the inner is crucial for find-
ing the answer to the outer, whereas parallel sub-questions
are, by definition, independent. Our nested decomposition
algorithm using the heuristic re-ranking approach achieves
an improvement of 2% (6 gains/1 loss) on the decomposable
question set, which translated to an end-to-end gain of 0.4%.

The impact of using both parallel and nested decompo-
sition is a 1.5% gain in accuracy on the decomposable set,
and a 1% gain on end-to-end system accuracy (our rules for

finding parallel and nested decompositions are disjoint so a
given question cannot fall in both classes).

A key point concerning these results is that the base-
line QA system represents state-of-the-art in solving Jeop-
ardy! questions. Moreover, our FJ evaluation data is known
to be harder than regular Jeopardy! questions. We estimate
qualified Jeopardy! players’ accuracy on FJ to be 48% (based
on player performance statistics from j-archive). A gain of
1% end-to-end on such questions is, therefore, a strong im-
provement. McNemar’s test with Yates’ correction for con-
tinuity [5] found the results to be statistically significant,
where significance is assessed for p < .05.

6. CONCLUSION
We argue that a question decomposition capability can

enhance the quality of factoid QA. We have developed a
general-purpose decomposition framework for complex fac-
toid questions, which distinguishes between parallel (inde-
pendent) and nested (sequential) question types, and ac-
commodates appropriate strategies for solving both. The
framework can be overlayed on any QA system that pro-
vides answers with confidences, and that considers the topic
of the question separate from its main content.

In addition to the typology of decomposable question types
(and associated detection rules), we propose a novel ques-
tion rewriting approach to mitigate the loss-of-context prob-
lem when dealing with shorter (non unique) facts, and a
re-ranking strategy that suitably combines results of the de-
composition analysis with information from the single-shot
QA approach.

This decomposition capability brings an improvement to
the performance of a state-of-the-art factoid answering QA
system—in the domain of Final Jeopardy!, which even qual-
ified human players find difficult—by 1.5% on decomposable
questions: a statistically significant gain.

7. REFERENCES
[1] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan,

D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock,
E. Nyberg, J. Prager, and N. Schlaefer. Building
Watson: An overview of the DeepQA project. AI
Magazine, 2010.

[2] S. Hartrumpf. Semantic Decomposition for Question
Answering. In Proceedings of ECAI-18, Greece, 2008.

[3] B. Katz, G. Borchardt, and S. Felshin. Syntactic and
Semantic Decomposition Strategies for Question
Answering from Multiple Sources. In Proceedings of the
AAAI Workshop on Inference for Textual Question
Answering, pages 35–41, Pittsburgh, PA, July 2005.

[4] F. Lacatusu, A. Hickl, and S. Harabagiu. The Impact of
Question Decomposition on the Quality of Answer
Summaries. In Proceedings of LREC-5, Italy, 2006.

[5] Q. McNemar. Note on the Sampling Error of the
Difference Between Correlated Proportions or
Percentages. Psychometrika, 12(2):153–157, 1947.

[6] E. Saquete, P. Mart́ınez-Barco, R. Muñoz, and
J. Vicedo. Splitting Complex Temporal Questions for
Question Answering Systems. In Proceedings of the
42nd ACL, Spain, July 2004.

[7] I. Witten and E. Frank. Data Mining—Practical
Machine Learning Tools and Techniques.
Morgan–Kaufmann, San Francisco, CA, 2000.

