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Abstract

The last decade has seen many interesting ap-
plications of Question Answering (QA) tech-
nology. The Jeopardy! quiz show is certainly
one of the most fascinating, from the view-
points of both its broad domain and the com-
plexity of its language. In this paper, we study
kernel methods applied to syntactic/semantic
structures for accurate classi®cation of Jeop-
ardy! de®nition questions. Our extensive em-
pirical analysis shows that our classi®cation
models largely improve on classi®ers based on
word-language models. Such classi®ers are
also used in the state-of-the-art QA pipeline
constituting Watson, the IBM Jeopardy! sys-
tem. Our experiments measuring their impact
on Watson show enhancements in QA accu-
racy and a consequent increase in the amount
of money earned in game-based evaluation.

1 Introduction

Question Answering (QA) is an important research
area of Information Retrieval applications, which re-
quires the use of core NLP capabilities, such as syn-
tactic and semantic processing for a more effective
user experience. While the development of most
existing QA systems are driven by organized eval-
uation efforts such as TREC (Voorhees and Dang,
2006), CLEF (Giampiccolo et al., 2007), and NT-
CIR (Sasaki et al., 2007), there exist efforts that
leverage data from popular quiz shows, such as Who
Wants to be a Millionaire (Clarke et al., 2001; Lam
et al., 2003) and Jeopardy! (Ferrucci et al., 2010), to
demonstrate the generality of the technology.

Jeopardy! is a popular quiz show in the US which
has been on the air for 27 years. In each game, three
contestants compete for the opportunity to answer
60 questions in 12 categories of 5 questions each.
Jeopardy! questions cover an incredibly broad do-
main, from science, literature, history, to popular
culture. We are drawn to Jeopardy! as a test bed
for open-domain QA technology due to its broad do-
main, complex language, as well as the emphasis on
accuracy, con®dence, and speed during game play.

While the vast majority of Jeopardy! questions
are factoid questions, we ®nd several other types
of questions in the Jeopardy! data, which can ben-
e®t from specialized processing in the QA system.
The additional processing in these questions com-
plements that of the factoid questions to achieve im-
proved overall QA performance. Among the various
types of questions handled by the system arede®ni-
tion questionsshown in the examples below:

(1) GON TOMORROW: It can be the basket
below a hot-air balloon or a ¯at-bottomed
boat used on a canal(answer: gondola);

(2) I LOVE YOU, ªM INº : Overbearing(an-
swer: domineering);

(3) INVEST: From the Latin for ªyearº, it's
an investment or retirement fund that pays
out yearly(answer: an annuity)

where the upper case text indicates the Jeop-
ardy! category for each question1.

Several characteristics of this class of questions
warrant special processing: ®rst, the clue (question)

1A Jeopardy! category indicates a theme is common among
its 5 questions.
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often aligns well with dictionary entries, making
dictionary resources potentially effective. Second,
these clues often do not indicate an answer type,
which is an important feature for identifying cor-
rect answers in factoid questions (in the examples
above, only (3) provided an answer type, ªfundº).
Third, de®nition questions are typically shorter in
length than the average factoid question. These dif-
ferences, namely the shorter clue length and the lack
of answer types, make the use of a specialized ma-
chine learning model potentially promising for im-
proving the overall system accuracy. The ®rst step
for handling de®nitions is, of course, the automatic
separation of de®nitions from other question types,
which is not a simple task in the Jeopardy! domain.
For instance, consider the following example which
is a variation of (3) above:

(4) INVEST: From the Latin for ªyearº,
an annuity is an investment or retirement
fund that pays out this often(answer:
yearly)

Even though the clue is nearly identical to (3), the
clue doesnot provide a de®nition for the answer
yearly, although at ®rst glance we may have been
misled. The source of complexity is given by the fact
that Jeopardy! clues are not phrased in interrogative
form as questions typically are. This complicates the
design of de®nition classi®ers since we cannot di-
rectly use either typical structural patterns that char-
acterize de®nition/description questions, or previous
approaches, e.g. (Ahn et al., 2004; Kaisser and Web-
ber, 2007; Blunsom et al., 2006). Given the com-
plexity and the novelty of the task, we found it use-
ful to exploit the kernel methods technology. This
has shown state-of-the-art performance in Question
Classi®cation (QC), e.g. (Zhang and Lee, 2003;
Suzuki et al., 2003; Moschitti et al., 2007) and it
is very well suited for engineering feature represen-
tations for novel tasks.

In this paper, we apply SVMs and kernel meth-
ods to syntactic/semantic structures for modeling
accurate classi®cation of Jeopardy! de®nition ques-
tions. For this purpose, we use several levels of lin-
guistic information: word and POS tag sequences,
dependency, constituency and predicate argument
structures and we combined them using state-of-
the-art structural kernels, e.g. (Collins and Duffy,

2002; Shawe-Taylor and Cristianini, 2004; Mos-
chitti, 2006). The extensive empirical analysis of
several advanced models shows that our best model,
which combines different kernels, improves the F1
of our baseline model by 67% relative, from 40.37
to 67.48. Surprisingly, with respect to previous ®nd-
ings on standard QC, e.g. (Zhang and Lee, 2003;
Moschitti, 2006), the Syntactic Tree Kernel (Collins
and Duffy, 2002) is not effective whereas the ex-
ploitation of partial tree patterns proves to be es-
sential. This is due to the different nature of Jeop-
ardy! questions, which are not expressed in the usual
interrogative form.

To demonstrate the bene®t of our question clas-
si®er, we integrated it into our Watson by coupling
it with search and candidate generation against spe-
cialized dictionary resources. We show that in end-
to-end evaluations, Watson with kernel-based de®-
nition classi®cation and specialized de®nition ques-
tion processing achieves statistically signi®cant im-
provement compared to our baseline systems.

In the reminder of this paper, Section 2 describes
Watson by focusing on the problem of de®nition
question classi®cation, Section 3 describes our mod-
els for such classi®ers, Section 4 presents our exper-
iments on QC, whereas Section 5 shows the ®nal im-
pact on Watson. Finally, Section 6 discusses related
work and Section 7 derives the conclusions.

2 Watson: The IBM Jeopardy! System

This section gives a quick overview of Watson and
the problem of classi®cation of de®nition questions,
which is the focus of this paper.

2.1 Overview

Watson is a massively parallel probabilistic
evidence-based architecture for QA (Ferrucci et
al., 2010). It consists of several major stages for
underlying sub-tasks, including analysis of the
question, retrieval of relevant content, scoring and
ranking of candidate answers, as depicted in Figure
1. In the rest of this section, we provide an overview
of Watson, focusing on the task of answering
de®nitional questions.
Question Analysis: The ®rst stage of the pipeline,
it applies several analytic components to identify
key characteristics of the question (such as answer



Figure 1: Overview of Watson

type, question classes, etc.) used by later stages of
the Watson pipeline. Various general purpose NLP
components, such as a parser and named entity de-
tector, are combined with task-speci®c modules for
this analysis.

The task-speci®c analytics include several QC
components, which determine if the question be-
longs to one or more broad ªquestion classesº.
These question classes can in¯uence later stages of
the Watson pipeline. For instance, a question de-
tected as anabbreviationquestion can invoke spe-
cialized candidate generators to produce possible ex-
pansions of the abbreviated term in the clue. Simi-
larly, the question classes can impact the methods
for answer scoring and the machine learning mod-
els used for ranking candidate answers. The focus
of this paper is on thede®nitionclass, which is de-
scribed in the next section.

Hypothesis Generation: Following question anal-
ysis, the Watson pipeline searches its document col-
lection for relevant documents and passages that are
likely to contain the correct answer to the question.
This stage of the pipeline generates search queries
based on question analysis results, and obtains a
ranked list of documents and passages most relevant
to the search queries. A variety of candidate gen-
eration techniques are then applied to the retrieved
results to produce a set of candidate answers.

Information obtained from question analysis can
be used to in¯uence the search and candidate gener-
ation processes. The question classes detected dur-
ing question analysis can focus the search towards
speci®c subsets of the corpus. Similarly, during can-
didate generation, strategies used to generate the set

of candidate answers are selected based on the de-
tected question classes.
Hypothesis and Evidence Scoring:A wide variety
of answer scorers are then used to gather evidence
supporting each candidate answer as the correct an-
swer to the given question. The scorers include both
context dependent as well as context independent
scorers, relying on various structured and unstruc-
tured resources for their supporting evidence.
Candidate Ranking: Finally, machine learning
models are used to weigh the gathered evidence and
rank the candidate answers. The models generate a
ranked list of answers each with an associated con-
®dence. The system can also choose to refrain from
answering a question if it has low con®dence in all
candidates. This stage of the pipeline employs sev-
eral machine learning models specially trained to
handle various types of questions. These models are
trained using selected feature sets based on question
classes and candidate answers are ªroutedº to the
appropriate model according to the question classes
detected during question analysis.

2.2 Answering De®nition Questions

Among the many question classes that Watson iden-
ti®es and leverages for special processing, of partic-
ular interest for this paper is the class we refer to
asde®nitionquestions. These are questions whose
clue texts contain one or more de®nitions of the cor-
rect answer. For instance, in example (3), the main
clause in the question corresponds to a dictionary
de®nition of the correct answer (annuity). Looking
up this de®nition in dictionary resources could en-
able us to answer this question correctly and with
high con®dence. This suggests that special process-


