Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technology, San Diego, CA, June 2016.

The Role of Context Types and Dimensionality
in Learning Word Embeddings

Oren Melamud™  David McClosky**

Siddharth Patwardhan® Mohit Bansal®

fComputer Science Department, Bar-Ilan University, Ramat-Gan, Israel
melamuol@cs.biu.ac.il

iEGoogle, New York, NY, USA
dmcc@google.com

®IBM Watson, Yorktown Heights, NY, USA
siddharth@us.ibm.com

$Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
mbansal@ttic.edu

Abstract

We provide the first extensive evaluation of
how using different types of context to learn
skip-gram word embeddings affects perfor-
mance on a wide range of intrinsic and ex-
trinsic NLP tasks. Our results suggest that
while intrinsic tasks tend to exhibit a clear
preference to particular types of contexts and
higher dimensionality, more careful tuning is
required for finding the optimal settings for
most of the extrinsic tasks that we consid-
ered. Furthermore, for these extrinsic tasks,
we find that once the benefit from increas-
ing the embedding dimensionality is mostly
exhausted, simple concatenation of word em-
beddings, learned with different context types,
can yield further performance gains. As an ad-
ditional contribution, we propose a new vari-
ant of the skip-gram model that learns word
embeddings from weighted contexts of substi-
tute words.

1 Introduction

Word embeddings have become increasingly pop-
ular lately, proving to be valuable as a source of
features in a broad range of NLP tasks with lim-
ited supervision (Turian et al., 2010; Collobert et
al., 2011; Socher et al., 2013; Bansal et al., 2014).
word2vec! skip-gram (Mikolov et al., 2013a)

*Majority of work performed while at IBM Watson.
lhttp://code.google.com/p/word2vec/

and GloVe? (Pennington et al., 2014) are among
the most widely used word embedding models to-
day. Their success is largely due to an efficient
and user-friendly implementation that learns high-
quality word embeddings from very large corpora.
Both word2vec and GloVe learn low-
dimensional continuous vector representations for
words by considering window-based contexts, i.e.,
context words within some fixed distance of each
side of the target word. However, the underlying
models are equally applicable to different choices
of context types. For example, Bansal et al. (2014)
and Levy and Goldberg (2014) showed that using
syntactic contexts rather than window contexts in
word2vec captures functional similarity (as in
lion:cat) rather than fopical similarity or relatedness
(as in lion:zoo). Further, Bansal et al. (2014) and
Melamud et al. (2015b) showed the benefits of
such modified-context embeddings in dependency
parsing and lexical substitution tasks. However,
to the best of our knowledge, there has not been
an extensive evaluation of the effect of multiple,
diverse context types on a wide range of NLP tasks.
Word embeddings are typically evaluated on in-
trinsic and extrinsic tasks. Intrinsic tasks mostly in-
clude predicting human judgments of semantic re-
lations between words, e.g., as in WordSim-353
(Finkelstein et al., 2001), while extrinsic tasks in-
clude various ‘real’ downstream NLP tasks, such as
coreference resolution and sentiment analysis. Re-

2http://nlp.stanford.edu/projects/glove/



cent works have shown that while intrinsic evalu-
ations are easier to perform, their correlation with
results on extrinsic evaluations is not very reliable
(Schnabel et al., 2015; Tsvetkov et al., 2015), stress-
ing the importance of the latter.

In this work, we provide the first extensive eval-
uation of word embeddings learned with different
types of context, on a wide range of intrinsic simi-
larity and relatedness tasks, and extrinsic NLP tasks,
namely dependency parsing, named entity recogni-
tion, coreference resolution, and sentiment analy-
sis. We employ contexts based of different word
window sizes, syntactic dependencies, and a lesser-
known substitute words approach (Yatbaz et al.,
2012). Finally, we experiment with combinations
of the above word embeddings, comparing two ap-
proaches: (1) simple vector concatenation that offers
a wider variety of features for a classifier to choose
and learn weighted combinations from, and (2) di-
mensionality reduction via either Singular Value
Decomposition or Canonical Correlation Analysis,
which tries to find a smaller subset of features.

Our results suggest that it is worthwhile to care-
fully choose the right type of word embeddings for
an extrinsic NLP task, rather than rely on intrinsic
benchmark results. Specifically, picking the optimal
context type and dimensionality is critical. Further-
more, once the benefit from increasing the embed-
ding dimensionality is mostly exhausted, concatena-
tion of word embeddings learned with different con-
text types can yield further performance gains.

2  Word Embedding Context Types

2.1 Learning Corpus

We use a fixed learning corpus for a fair compari-
son of all embedding types: a concatenation of three
large English corpora: (1) English Wikipedia 2015,
(2) UMBC web corpus (Han et al., 2013), and (3)
English Gigaword (LDC2011T07) newswire corpus
(Parker et al., 2011). Our concatenated corpus is
diverse and substantial in size with approximately
10B words. This allows us to learn high quality em-
beddings that cover a large vocabulary. After ex-
tracting clean text from these corpora, we used Stan-
ford CoreNLP (Manning et al., 2014) for sentence
splitting, tokenization, part-of-speech tagging and

dependency parsing.® Then, all tokens were lower-
cased, and sentences were shuffled to prevent struc-
tured bias. When learning word embeddings, we ig-
nored words with corpus frequency lower than 100,
yielding a vocabulary of about 500K words.*

2.2 Window-based Word Embeddings

We used word2vec’s skip-gram model with neg-
ative sampling (Mikolov et al., 2013b) to learn
window-based word embeddings.’ This popular
method embeds both target words and contexts in
the same low-dimensional space, where the embed-
dings of a target and context are pushed closer to-
gether the more frequently they co-occur in a learn-
ing corpus. Indirectly, this also results in similar em-
beddings for target words that co-occur with similar
contexts. More formally, this method optimizes the
following objective function:
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where v; and v/, are the vector representations of tar-
get word ¢ and context word ¢. PAIRS is the set
of window-based co-occurring target-context pairs
considered by the model that depends on the win-
dow size, and NEGS ;. is a set of randomly sam-
pled context words used with the pair (¢, c).5

We experimented with window sizes of 1, 5,
and 10, and various dimensionalities. We denote a
window-based word embedding with window size
of n and dimensionality of m with Wrn™. For ex-
ample, W53 is a word embedding learned using a
window size of 5 and dimensionality of 300.

2.3 Dependency-based Word Embeddings

We used word2vect’ (Levy and Goldberg, 2014),
to learn dependency-based word embeddings from

3Parses follow the Universal Dependencies formalism and
were produced by Stanford CoreNLP, version 3.5.2

*Our word embeddings are available at: www.cs.biu.ac.
il/nlp/resources/downloads/embeddings—-contexts/

SWe used negative sampling = 5 and iterations = 3 in all of
the experiments described in this paper.

®For more details refer to Mikolov et al. (2013b).

7http://bitbucket.org/yoavgo/wordZvecf



the parsed version of our corpus, similar to the ap-
proach of Bansal et al. (2014). word2vecf ac-
cepts as its input arbitrary target-context pairs. In
the case of dependency-based word embeddings,
the context elements are the syntactic contexts of
the target word, rather than the words in a win-
dow around it. Specifically, following Levy and
Goldberg (2014), we first ‘collapsed’ prepositions
(as implemented in word2vecf). Then, for a tar-
get word t with modifiers my,...,m and head h,
we paired the target word with the context elements
(M, 71)seees (Mg, 1), (hy 7, 1), Where 7 is the type of
the dependency relation between the head and the
modifier (e.g., dobj, prep_of) and r—! denotes an in-
verse relation. We denote a dependency-based word
embedding with dimensionality of m by DEP™. We
note that under this setting word2vect optimizes
the same objective function described in Equa-
tion (1), with PAIRS now comprising dependency-
based pairs instead of window-based ones.

2.4 Substitute-based Word Embeddings

Substitute vectors are a recent approach to represent-
ing contexts of target words, proposed in Yatbaz et
al. (2012). Instead of the neighboring words them-
selves, a substitute vector includes the potential filler
words for the target word slot, weighted according
to how ‘“fit’ they are to fill the target slot given the
neighboring words. For example, the substitute vec-
tor representing the context of the word love in “I
love my job”, could look like: [quit 0.5, love 0.3,
hate 0.1, lost 0.1]. Substitute-based contexts are
generated using a language model and were suc-
cessfully used in distributional semantics models for
part-of-speech induction (Yatbaz et al., 2012), word
sense induction (Baskaya et al., 2013), functional se-
mantic similarity (Melamud et al., 2014) and lexical
substitution tasks (Melamud et al., 2015a).

Similar to Yatbaz et al. (2012), we consider the
words in a substitute vector, as a weighted set of con-
texts ‘co-occurring’ with the observed target word.
For example, the above substitute vector is consid-
ered as the following set of weighted target-context
pairs: {(love, quit, 0.5), (love, love, 0.3), (love,
hate, 0.1), (love, lost, 0.1)}. To learn word embed-
dings from such weighted target-context pairs, we
extended word2vect by modifying the objective

W10300 DEPBOO SUBSOO
played play singing
play played rehearsing
plays understudying performing
professionally caddying composing
player plays running

Table 1: The top five words closest to target word
playing in different embedding spaces.

function in Equation (1) as follows:
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where oy . is the weight of the target-context
pair (¢, c). With this simple modification, the effect
of target-context pairs on the learned word represen-
tations becomes proportional to their weights.

To generate the substitute vectors we followed
the methodology in (Yatbaz et al.,, 2012; Mela-
mud et al., 2015a). We learned a 4-gram Kneser-
Ney language model from our learning corpus us-
ing KenLM (Heafield et al., 2013). Then, we used
FASTSUBS (Yuret, 2012) with this language model
to efficiently generate substitute vectors, where the
weight of each substitute s is the conditional proba-
bility p(s|C) for this substitute to fill the target slot
given the sentential context C. For efficiency, we
pruned the substitute vectors to their top-10 sub-
stitutes, s1..510, and normalized their probabilities
such that >, _, ;,p(si|C) = 1. We also gener-
ated only up to 20,000 substitute vectors for each tar-
get word type. Finally, we converted each substitute
vector into weighted target-substitute pairs and used
our extended version of word2vecf to learn the
substitute-based word embeddings, denoted SUB™.

2.5 Qualitative Effect of Context Type

To motivate the rest of our work, we first qualita-
tively inspect the top most-similar words to some
target words, using cosine similarity of their respec-
tive embeddings. As illustrated in Table 1, in embed-
dings learned with large window contexts, we see
both functionally similar words and topically similar
words, sometimes with a different part-of-speech.
With small windows and dependency contexts, we
generally see much fewer topically similar words,
which is consistent with previous findings (Bansal et



al., 2014; Levy and Goldberg, 2014). Finally, with
substitute-based contexts, there appears to be even a
stronger preference for functional similarity, with a
tendency to also strictly preserve verb tense.

3  Word Embedding Combinations

As different choices of context type yield word
embeddings with different properties, we hypothe-
size that combinations of such embeddings could be
more informative for some extrinsic tasks. We ex-
perimented with two alternative approaches to com-
bine different sets of word embeddings: (1) Sim-
ple vector concatenation, which is a lossless com-
bination that comes at the cost of increased dimen-
sionality, and (2) SVD and CCA, which are lossy
combinations that attempt to capture the most use-
ful information from the different embeddings sets
with lower dimensionality. The methods used are
described in more detail next.

3.1 Concatenation

Perhaps the simplest way to combine two different
sets of word embeddings (sharing the same vocabu-
lary) is to concatenate their word vectors for every
word type. We denote such a combination of word
embedding set A with word embedding set B using
the symbol (+). For example W10+DEPS% is the
concatenation of W103%° with DEP3°Y. Naturally,
the dimensionality of the concatenated embeddings
is the sum of the dimensionalities of the component
embeddings. In our experiments, we only ever com-
bine word embeddings of equal dimensionality.

The motivation behind concatenation relates pri-
marily to supervised models in extrinsic tasks. In
such settings, we hypothesize that using concate-
nated word embeddings as input features to a classi-
fier could let it choose and combine (i.e., via learned
weights) the most suitable features for the task. Con-
sider a situation where the concatenated embedding
W10+DEPY% is used to represent the word inputs
to a named entity recognition classifier. In this case,
the classifier could choose, for instance, to represent
entity words mostly with dependency-based embed-
ding features (reflecting functional semantics), and
surrounding words with large window-based embed-
ding features (reflecting topical semantics).

3.2 Singular Value Decomposition

Singular Value Decomposition (SVD) has been
shown to be effective in compressing sparse word
representations (Levy et al., 2015). In this work, we
use this technique in the same way to reduce the di-
mensionality of concatenated word embeddings.

3.3 Canonical Correlation Analysis

Recent work used Canonical Correlation Analysis
(CCA) to derive an improved set of word embed-
dings. The main idea is that two distinct sets of
word embeddings, learned with different types of in-
put data, are considered as multi-views of the same
vocabulary. Then, CCA is used to project each onto
a lower dimensional space, where correlation be-
tween the two is maximized. The correlated infor-
mation is presumably more reliable. Dhillon et al.
(2011) considered their two CCA views as embed-
dings learned from the left and from the right con-
text of the target words, showing improvements on
chunking and named entity recognition. Faruqui and
Dyer (2014) and Lu et al. (2015) considered multi-
lingual views, showing improvements in several in-
trinsic tasks, such as word and phrase similarity.
Inspired by this prior work, we consider pairs of
word embedding sets, learned with different types
of context, as different views and correlate them
using linear CCA.® We use either the SimLex-
999 or WordSim-353-R intrinsic benchmark (sec-
tion 4.1) to tune the CCA hyperparameters’ with
the Spearmint Bayesian optimization tool'® (Snoek
et al.,, 2012). This results in different projections
for each of these tuning objectives, where SimLex-
999/WordSim-353-R is expected to give some bias
towards functional/topical similarity, respectively.

4 Evaluation

4.1 Intrinsic Benchmarks

We employ several commonly used intrinsic bench-
marks for assessing how well word embeddings
mimic human judgements of semantic similarity of
words. The popular WordSim-353 dataset (Finkel-
stein et al., 2001) includes 353 word pairs manually

8See Faruqui and Dyer (2014), Lu et al. (2015) for details.
These are projection dimensionality and regularization.
mgithub .com/JasperSnoek/spearmint



annotated with a degree of similarity. For exam-
ple, computer:keyboard is annotated with 7.62, in-
dicating a relatively high degree of similarity. While
WordSim-353 does not make a distinction between
different ‘flavors’ of similarity, Agirre et al. (2009)
proposed two subsets of this dataset, WordSim-353-
S and WordSim-353-R, which focus on functional
and topical similarities, respectively. SimLex-999
(Hill et al., 2014) is a larger word pair similarity
dataset with 999 annotated pairs, purposely built to
focus on functional similarity. We evaluate our em-
beddings on these datasets by computing a score
for each pair as the cosine similarity of two word
vectors. The Spearman’s correlation!! between the
ranking of word pairs induced from the human an-
notations and that from the embeddings is reported.

The TOEFL task contains 80 synonym selection
items, where a synonym of a target word is to be se-
lected out of four possible choices. We report the
overall accuracy of a system that uses cosine dis-
tance between the embeddings of the target word
and each of the choices to select the one most similar
to the target word as the answer.

4.2 Extrinsic Benchmarks

The following four diverse downstream NLP tasks
serve as our extrinsic benchmarks.'?

1) Dependency Parsing (PARSE) The Stanford
Neural Network Dependency (NNDEP) parser
(Chen and Manning, 2014) uses dense continuous
representations of words, parts-of-speech and de-
pendency labels. While it can learn these repre-
sentations entirely during the training on labeled
data, Chen and Manning (2014) show that initializa-
tion with word embeddings, which were pre-trained
on unlabeled data, yields improved performance.
Hence, we used our different types of embeddings to
initialize the NNDEP parser and compared their per-
formance on a standard Penn Treebank benchmark.
We used WSIJ sections 2-21 for training and 22 for
development. We used predicted tags produced via
20-fold jackknifing on sections 2-21 with the Stan-
ford CoreNLP tagger.

""We used spearmanr, SciPy version 0.15.1.
12Since our goal is to explore performance trends, we mostly
experimented with the tasks’ development sets.

2) Named Entity Recognition (NER) We used the
NER system of Turian et al. (2010), which allows
adding word embedding features (on top of various
other features) to a regularized averaged perceptron
classifier, and achieves near state-of-the-art results
using several off-the-shelf word representations. We
varied the type of word embeddings used as features
when training the NER model, to evaluate their ef-
fect on NER benchmarks results. Following Turian
et al. (2010), we used the CoNLL-2003 shared task
dataset (Tjong Kim Sang and De Meulder, 2003)
with 204K/51K train/dev words, as our main bench-
mark. We also performed an out-of-domain eval-
uation, using CoNLL-2003 as the train set and the
MUCY7 formal run (59K words) as the test set.'?

3) Coreference Resolution (COREF) We used the
Berkeley Coreference System (Durrett and Klein,
2013), which achieves near state-of-the-art results
with a log-linear supervised model. Most of the fea-
tures in this model are associated with pairs of cur-
rent and antecedent reference mentions, for which a
coreference decision needs to be made. To evaluate
the contribution of different word embedding types
to this model, we extended it to support the follow-
ing additional features: {a;}i=1 m, {¢i}i=1..m and
{a; - ¢;}i=1..m» where a; or ¢; is the value of the ith
dimension in a word embedding vector represent-
ing the antecedent or current mention, respectively.
We considered two different word embedding repre-
sentations for a mention: (1) the embedding of the
head word of the mention and (2) the average em-
bedding of all words in the mention. The features
of both types of representations were presented to
the learning model as inputs at the same time. They
were added on top of Berkeley’s full feature list (‘FI-
NAL’) as described in Durrett and Klein (2013). We
evaluated our features on the CoNLL-2012 corefer-
ence shared task (Pradhan et al., 2012).

4) Sentiment Analysis (SENTI) Following
Faruqui et al. (2014), we used a sentence-level
binary decision version of the sentiment analysis
task from Socher et al. (2013). In this setting,
neutral sentences were discarded and all remaining
sentences were labeled coarsely as positive or neg-
ative. Maintaining the original split into train/dev

13See Turian et al. (2010) for more details on this setting.
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Figure 1: Intrinsic tasks’ results for embeddings learned with different types of contexts.

results, we get a dataset containing 6920/872
sentences. To evaluate different types of word
embeddings, we represented each sentence as an
average of its word embeddings and then used an
L2-regularized logistic regression classifier trained
on these features to predict the sentiment labels.

5 Results

5.1 Intrinsic Results for Context Types

The results on the intrinsic tasks are illustrated in
Figure 1. First, we see that the performance on all
tasks generally increases with the number of dimen-
sions, reaching near-optimal performance at around
300 dimensions, for all types of contexts. This is
in line with similar observations on skip-gram word
embeddings (Mikolov et al., 2013a).

Looking further, we observe that there are sig-
nificant differences in the results when using dif-
ferent types of contexts. The effect of context

choice is perhaps most evident in the WordSim-353-
R task, which captures topical similarity. As might
be expected, in this benchmark, the largest-window
word embeddings perform best. The performance
decreases with the decrease in window size and
then reaches significantly lower levels for depen-
dency (DEP) and substitute-based (SUB) embed-
dings. Conversely, in WordSim-353-S and SimLex-
999, both of which capture a more functional simi-
larity, the DEP embeddings are the ones that perform
best, strengthening similar observations in Levy and
Goldberg (2014). Finally, in the TOEFL benchmark,
all contexts except for SUB, perform comparably.

5.2 Extrinsic Results for Context Types

The extrinsic tasks results are illustrated in Figure 2.
A first observation is that optimal extrinsic results
may be reached with as few as 50 dimensions. Fur-
thermore, performance may even degrade when us-
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Figure 2: Extrinsic tasks’ development set results for embeddings learned with different types of contexts.
‘base’ denotes the results with no word embedding features. Due to computational limitations we tested
NER and PARSE with only up to 300 dimensions embeddings, and COREF with up to 100.

ing too many dimensions, as is most evident in the
NER task. This behavior presumably depends on
various factors, such as the size of the labeled train-
ing data or the type of classifier used, and highlights
the importance of tuning the dimensionality of word
embeddings in extrinsic tasks. This is in contrast
to intrinsic tasks, where higher dimensionality typi-
cally yields better results.

Next, comparing the results of different types of
contexts, we see, as might be expected, that de-
pendency embeddings work best in the PARSE task.
More generally, embeddings that do well in func-
tional similarity intrinsic benchmarks and badly in
topical ones (DEP, SUB and W1) work best for
PARSE, while large window contexts perform worst,
similar to observations in Bansal et al. (2014).

In the rest of the tasks it’s difficult to say which
context works best for what. One possible expla-

Context type | F1 x 100
DEP 79.8
Wi 79.3
SUB 79.0
W10 78.1
W5 77.4
None 71.8

Table 2: NER MUC out-of-domain results for dif-
ferent embeddings with dimensionality = 25.

nation to this in the case of NER and COREF is that
the embedding features are used as add-ons to an al-
ready competitive learning system. Therefore, the
total improvement on top of a ‘no embedding’ base-
line is relatively small, leaving little room for signif-
icant differences between different contexts.

We did find a more notable contribution of word
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Figure 3: Mean development set results for the tasks
PARSE and SENTI. ‘mean’ and ’mean+’ stand for
mean results across all single context types and con-
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embedding features to the overall system perfor-
mance in the out-of-domain NER MUC evaluation,
described in Table 2. In this out-of-domain setting,
all types of contexts achieve at least five points im-
provement over the baseline. Presumably, this is be-
cause continuous word embedding features are more
robust to differences between train and test data,
such as the typical vocabulary used. However, a de-
tailed investigation of out-of-domain settings is out
of scope for this paper and left for future work.

5.3 Extrinsic Results for Combinations

A comparison of the results obtained on the ex-
trinsic tasks using the word embedding concate-
nations (concats), described in section 3.1, versus
the original single context word embeddings (sin-
gles), appears in Table 3. To control for dimen-
sionality, concats are always compared against sin-

gles with identical dimensionality. For example, the
200-dimensional concat W10+DEP?%, which is a
concatenation of W10'%° and DEP'%, is compared
against 200-dimensional singles, such as W102%,

Looking at the results, it seems like the bene-
fit from concatenation depends on the dimension-
ality and task at hand, as also illustrated in Fig-
ure 3. Given task X and dimensionality d, if % isin
the range where increasing the dimensionality yields
significant improvement on task X, then it’s better
to simply increase dimensionality of singles from %
to d rather than concatenate. The most evident ex-
ample for this are the results on the SENTT task with
d = 50. In this case, the benefit from concatenat-
ing two 25-dimensional singles is notably lower than
that of using a single 50-dimensional word embed-
ding. On the other hand, if g is in the range where
near-optimal performance is reached on task X, then
concatenation seems to pay off. This can be seen in
SENTI with d = 600, PARSE with d = 200, and NER
with d = 50. More concretely, looking at the best
performing concatenations, it seems like combina-
tions of the topical W10 embedding with one of the
more functional ones, SUB, DEP or W1, typically
perform best, suggesting that there is added value in
combining embeddings of different nature.

Finally, our experiments with the methods using
SVD (section 3.2) and CCA (section 3.3) yielded
degraded performance compared to single word em-
beddings for all extrinsic tasks and therefore are not
reported for brevity. These results seem to further
strengthen the hypothesis that the information cap-
tured with varied types of context is different and
complementary, and therefore it is beneficial to pre-
serve these differences as in our concatenation ap-
proach.

6 Related Work

There are a number of recent works whose goal is
a broad evaluation of the performance of different
word embeddings on a range of tasks. However,
to the best of our knowledge, none of them focus
on embeddings learned with diverse context types
as we do. Levy et al. (2015), Lapesa and Evert
(2014), and Lai et al. (2015) evaluate several design
choices when learning word representations. How-
ever, Levy et al. (2015) and Lapesa and Evert (2014)



Dimensions | Result SENTI PARSE NER COREF
best+ 74.3 (W10+W1) 88.7 (W10+SUB) | 93.6 (W1+DEP) 62.4 (W10+W1)
50 best 77.3 (SUB) 88.9 (W1) 93.3 (W1) 62.3 (DEP)
mean+ | 72.7 88.3 93.3 62.1
mean 74.7 88.4 93.1 62.2
best+ 81.0 (W10+SUB) | 89.1 (W1+DEP) 93.1 (W10+DEP)
200 best 80.2 (W10) 88.8 (SUB) 92.8 (W10)
mean+ | 79.1 88.9 92.8
mean 79.9 88.6 92.4
best+ 82.6 (W10+SUB)
best 82.3 (W1)
600 mean+ | 82.0
mean 81.5

Table 3: Extrinsic tasks development set results obtained with word embeddings concatenations. ‘best’
and ‘best+’ are the best results achieved across all single context types and context concatenations, respec-
tively (best performing embedding indicated in parenthesis). ‘mean’ and ‘mean+’ are the mean results for
the same. Due to computational limitations of the employed systems, some of the evaluations were not

performed.

perform only intrinsic evaluations and restrict con-
text representation to word windows, while Lai et
al. (2015) do perform extrinsic evaluations, but re-
strict their context representation to a word window
with the default size of 5. Schnabel et al. (2015)
and Tsvetkov et al. (2015) report low correlation be-
tween intrinsic and extrinsic results with different
word embeddings (they did not evaluate different
context types), which is consistent with differences
we found between intrinsic and extrinsic perfor-
mance patterns in all tasks, except parsing. Bansal et
al. (2014) show that functional (dependency-based
and small-window) embeddings yield higher pars-
ing improvements than topical (large-window) em-
beddings, which is consistent with our findings.

Several works focus on particular types of con-
texts for learning word embeddings. Cirik and
Yuret (2014) investigates S-CODE word embed-
dings based on substitute word contexts. Ling et al.
(2015b) and Ling et al. (2015a) propose extensions
to the standard window-based context modeling.
Alternatively, another recent popular line of work
(Faruqui et al., 2014; Kiela et al., 2015) attempts
to improve word embeddings by using manually-
constructed resources, such as WordNet. These
techniques could be complementary to our work. Fi-
nally, Yin and Schiitze (2015) and Goikoetxea et al.
(2016) propose word embeddings combinations, us-
ing methods such as concatenation and CCA, but

evaluate mostly on intrinsic tasks and do not con-
sider different types of contexts.

7 Conclusions

In this paper we evaluated skip-gram word embed-
dings on multiple intrinsic and extrinsic NLP tasks,
varying dimensionality and type of context. We
show that while the best practices for setting skip-
gram hyperparameters typically yield good results
on intrinsic tasks, success on extrinsic tasks requires
more careful thought. Specifically, we suggest that
picking the optimal dimensionality and context type
are critical for obtaining the best accuracy on ex-
trinsic tasks and are typically task-specific. Further
improvements can often be achieved by combining
complementary word embeddings of different con-
text types with the right dimensionality.
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