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Abstract

This paper proposes state-of-the-art mod-
els for time-event relation extraction
(TERE). The models are specifically de-
signed to work effectively with relations
that span multiple sentences and para-
graphs, i.e., inter-sentence TERE. Our
main idea is: (i) to build a computational
representation of the context of the two
target relation arguments, and (ii) to en-
code it as structural features in Support
Vector Machines using tree kernels. Re-
sults on two data sets — Machine Read-
ing and TimeBank — with 3-fold cross-
validation show that the combination of
traditional feature vectors and the new
structural features improves on the state of
the art for inter-sentence TERE by about
20%, achieving a 30.2 F1 score on inter-
sentence TERE alone, and 47.2 F1 for all
TERE (inter and intra sentence combined).

1 Introduction

Time-Event Relation Extraction (TERE) is the
task of linking event mentions and relation men-
tions to occurrences of “time stamps” in text. We
define it as follows: given a set of textual expres-
sions denoting events and relations, and a set of
time expressions in the same text document, find
all instances of temporal relations between ele-
ments of the two input sets. A relation between
an event and a time expression indicates that the
event occurs within the temporal context specified
by the time expression, for example, the following
sentence:

He succeeded James A. Taylor, who stepped down
as chairman, president and chief executive in
March for health reasons; the appointment took
effect Nov. 13.

Siddharth Patwardhan and Chris Welty
IBM T. J. Watson Research Center
Yorktown Heights NY 10598
siddharth@us.ibm.com
welty@us.ibm.com

conveys two different events, succession and step-
ping down, linked to the time stamps, Nov. 13 and
March, respectively.

In this paper, we focus on the task of linking
time expressions to events, i.e., we carry out a
classification task, where, for each possible pair
of (event/relation, time) in a document, the clas-
sifier decides whether there exists a link between
the two. In particular, we assume that the event
mentions, relation mentions and time expressions
are given to us by an external process. There is a
large body of work on the above topics and they
remain difficult problems, but we use human an-
notated mentions and expressions as input to our
models since TERE itself is a relatively new prob-
lem in this context. Previous work in TempEval-2
(Verhagen et al., 2010) and our work (Hovy et al.,
2012) have shown that accurate relation classifiers
can be modeled with supervised approaches, pro-
vided that the expressions are limited to be in the
same sentence. In contrast, there is almost no pre-
vious work on inter-sentence TERE (ISTERE), for
three main reasons:

e Across a document, the number of time-event
pairs to consider is large, as they are quadratic in
the number of time and event expressions.

e There are almost no practically useful linguis-
tic models that can be applied for capturing inter-
sentence relations.

e Defining inter-sentence features is complex:
their non-optimal definition in a task such as
TERE — where there is a rather high imbalance be-
tween positive and negative examples — results in
underperforming machine learning models.

In this paper, we design novel supervised models
for ISTERE based on a structural representation of
the pairs of sentences that contain the target rela-
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tion arguments. We define methods to deal with
time-event relations, where the text fragment indi-
cating the time expression, e.g., the appointment
took effect Nov. 13 of the example above, is sep-
arated from the main event, e.g., succession and
stepping down. In particular, our representation
is constituted by a pair of shallow syntactic trees
(one for each sentence containing the relation ar-
guments), where their nodes are enriched with se-
mantic labels, i.e., EVENT and TIME. We rely on
automatic feature engineering with structural ker-
nels (see e.g., (Moschitti, 2008; Moschitti, 2009))
to feed the learning algorithm with meaningful
patterns implicitly described by such a representa-
tion. Kernels are applied to our shallow syntactic
representations of text resulting in a model robust
to noise and easily adaptable to new domains and
tasks, such as ISTERE.

We tested our models on Machine Reading and
TimeBank datasets over three different configura-
tions: (i) relation arguments both within the same
sentence, (ii) relation arguments in different sen-
tences and (iii) relation arguments both, within
and across, sentences. Our experiments demon-
strate that such approach is very promising, as it
improves over the state of the art for ISTERE by
up to 20% in F1.

In the remainder of the paper, Sec. 2 surveys the
related work, Sec. 3 presents the previous state-of-
the-art models for intra-sentence TERE also using
structural kernels, Sec. 4 describes our new mod-
els for intra/inter TERE, Sec. 5 lays out the ex-
periments and, finally, Sec. 6 discusses the results
deriving our conclusions.

2 Related Work

The extraction of relations between entities has
been a long-standing topic of research, with work
spanning more than a couple of decades, e.g., ACE
(Doddington et al., 2004) and MUC (Grishman
and Sundheim, 1996).

In particular, sentence-level Relation Extraction
(RE) has been typically modeled with supervised
approaches, using manually annotated data, such
as ACE (Kambhatla, 2004). Most work has fo-
cused on kernel methods, i.e., string and tree ker-
nels (Bunescu and Mooney, 2005; Culotta and
Sorensen, 2004; Zhang et al., 2005; Zhang et
al., 2006) or their combinations (Nguyen et al.,
2009). From the kernel perspective, our approach
to TERE is another variant of the general RE work
using kernel: we use PTK applied to two-level

shallow syntactic trees, which extracts a sort of
hierarchical subsequences. This follows up our
rather long research, e.g., tree kernels for mod-
eling the relations between syntactic constituents
embedded in pairs of text (i.e., question and an-
swer passage) for answer re-ranking (Moschitti et
al., 2007; Moschitti, 2008; Moschitti, 2009; Mos-
chitti and Quarteroni, 2008; Moschitti and Quar-
teroni, 2010). A more computationally expen-
sive solution based on enumerating relational links
between constituents was given in (Zanzotto and
Moschitti, 2006; Zanzotto et al., 2009) for the tex-
tual entailment task. Some faster versions were
provided in (Moschitti and Zanzotto, 2007; Zan-
zotto et al., 2010). More efficient solutions based
on a shallow tree and relational tags were recently
proposed in (Severyn and Moschitti, 2012; Sev-
eryn et al., 2013).

Regarding the more specific task of extraction
of temporal relations, the typical approaches fol-
low similar principles of the above RE methods.
Early work was devoted to ordering events with
respect to one another, e.g., (Chambers and Juraf-
sky, 2008), and detecting their typical durations,
e.g., (Pan et al.,, 2006). The TempEval work-
shops (Verhagen et al., 2007) defined the task of
(i) extracting temporal relations between events
and time expressions and (ii) naming relations like
BEFORE, AFTER or OVERLAP. We focus on the
first part of the TempEval task, following (Filatova
and Hovy, 2001; Boguraev and Ando, 2005; Hovy
etal., 2012), where we used the the system and re-
sults associated with the latter paper as a baseline
of this paper. (Mirroshandel et al., 2011) used syn-
tactic tree kernels for event-time links in the same
sentence. As we aim at exploring long-distance
RE, we consider more robust representations than
syntactic trees, i.e., shallow syntactic trees, which
we have successfully used in other research, e.g.,
(Severyn and Moschitti, 2012).

A recent challenge, i2b2!' 2012, also dealing
with ISTERE was carried out in the biomedical
domain. We could not directly compare with the
challenge’s systems as their results were not avail-
able to us during the writing of this paper. Thus,
we can only report on work targeting similar tasks,
e.g., (Mani et al., 2006) used time relations be-
tween events to build a classifier that marks each
pair of events with a temporal relation, exploiting
temporal closure properties; and (ii) (Kolomiyets

"https://www.i2b2.0org/pubs/index.html
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Figure 1: A kernel representations of the baseline model constituted by a bag-of-word (BOW) tree
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Figure 2: E.g. features from STK with BOW tree

et al., 2012) proposed to link events via partial or-
dering relations like BEFORE, AFTER, OVER-
LAP and IDENTITY.

Finally, a recent work explicitly tackling the IS-
TERE task is described in (Do et al., 2012). Their
system was based on three classifiers: (i) a local
classifier, which processes all pairs of events and
time expressions in a document and decides which
pairs are linked together; (ii) a classifier between
pairs of events, which determines their relations:
BEFORE, AFTER, OVERLAP and NO RELA-
TION; and (iii) a joint model which, exploiting
global constraints, can highly improve the overall
ISTERE accuracy. We will further comment on
this work in Sec. 6.

3 Baseline Models for TERE

The analysis of previous work has shown that
there is almost no models for ISTERE. Therefore
to align with prior work, we compare with previ-
ous models on standard TERE (extraction within
a sentence). For this purpose, after formally defin-
ing the task, we describe the system we used as
our baseline, which includes two types of features:
(i) those manually designed also called linear fea-
tures and (ii) structural features generated by tree
kernels.

Task Definition. TERE is formally defined as
follows: given the sets of expressions E denot-
ing events or relation mentions, and 7" describing

time expressions in the same document: (i) build
all pairs (e,t) where e € E and t € T and (ii)
classify (e, t) to determine if a time-event relation
is held, i.e., if e occurs or holds within the tempo-
ral context specified by ¢. In our study, we assume
that: (i) a timestamp must be explicitly stated for
each event/relation that we consider to be in a tem-
poral relation; and (ii) every event/relation is as-
sociated with only one time expression whereas a
temporal expression can be linked to one or more
events or relations.

Feature Vectors. We used system and features
defined in our previous work (Hovy et al., 2012),
which in turn are based on the work by (Boguraev
and Ando, 2005). The feature set can be divided
in three different classes: (i) Features associated
with events or relations. These are very similar
to features typically used to represent the context
of entities in traditional relation extraction tasks,
which are primarily syntactic features drawn from
the parser and for reporting verbs. (ii) Features
specific to the temporal expressions. These are pri-
marily designed to capture various properties of
the temporal expressions. For instance, whether
it is a duration, time or date, or whether its pre-
modifiers are among those that indicate the type of
expression. We include also surface features, such
as numeric or non-numeric tokens in the phrase.
(iii) Features describing context around both the
arguments. These are primarily drawn from the
work by Boguraev and Ando, and include features
such as n-grams and syntactic/structural patterns.
The latter also cover syntactic relations between
an event and a temporal expression, ordering of
the two in the sentence, etc.

Tree Kernels. Convolution tree kernels (TK)
compute the number of common substructures be-
tween two trees without explicitly considering the
whole fragment space. TKs are equivalent to a
scalar product between vectors of tree fragments.
Therefore using TK in SVMs is equivalent to use
subtrees as features. Different TKs exist, here we
consider the partial tree kernel (PTK) defined in
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Figure 3: New sentence tree representation (STR)
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Figure 4: Some of the structural features generated by PTK when applied to the STR of Fig. 3

(Moschitti, 2006), which can count any tree frag-
ments constituted by connected nodes.

Computational Structures. In (Hovy et al.,
2012), we showed that combining manually engi-
neered features with tree kernels produces a bet-
ter model. We also show that exploiting syntactic
information of the sentence containing the rela-
tional expressions is not trivial. Thus, we devel-
oped a bag-of-words (BOW) tree representation
capturing the context of the target time/event ex-
pressions. The latter were marked-up with labels
such as EVENT (or equivalently RELATION) and
TIME. Figure 1 illustrates an example of the tree
representations for the sentence:

Revenue gained 13% to $77.3 million from $68.5
million last Monday.

Such BOW tree is constituted by: (i) a root
node; (ii) a conceptual level, which specifies
the semantic type in the sentence, i.e., TERM,
TIME or EVENT expressions; (iii) a token
node level (TOK); and the lexical level, list-
ing the words of the constituents. PTK ap-
plied to such trees generates features, such
as [TIME [last] [monday]] and [TIME
[ [monday]] or more interesting features like
those shown in Figure 2. For example, such
features can learn the pattern:

EVENT_gain, %, last, TIME.

It should be noted that such a tree represents
only one relation. In case a sentence contains
more than one event/relation, separate trees for
each must be generated (each will be a separate
training/test instance). Such trees differ in the po-
sition of the EVENT/RELATION nodes (at level

revenue,

1 of the tree).

Finally, in (Hovy et al., 2012) we showed that
this model significantly improves over manually
engineered features. However, to exploit syntac-
tic information, we defined another separate tree
with POS-tag nodes in place of words causing the
features coming from different trees to be disjoint.
This model cannot be applied for ISTERE as the
large number of identical nodes, TERM and TOK
would cause the PTK computational complexity
to degenerate to O(n?) (see (Moschitti, 2009)).

4 Models for Inter-Sentence TERE

We describe here our new representation, which
is an improvement over our previous models on
intra-sentence TERE and, more importantly, can
be used for ISTERE.

Intra-Sentence Representation. We improve
on the previous work by reformulating the BOW
tree as follows:

1. We remove the TERM and TOK levels and we
propose only two levels — the POS-tag and the
word sequences.

2. The annotation of the target time or event
expression is directly performed on the POS-tag
node.

For example, Fig. 3 shows the transformation of
the trees in Fig. 1 to the new representation. The
event gain and the time expression last monday
are marked at POS-tag level®. This also compacts
the segmentation of time expressions. As a result,
the application of PTK to the new sentence tree

>The POS tagset is the one used in the IBM Watson sys-
tem (Ferrucci et al., 2010).
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Figure 5: A second STR containing a time expression. Together with the one of Fig. 3 containing the
event, it forms the representation pair, input to the kernel used for ISTERE.

representation (STR) generates very powerful and
compact features, e.g., those described in Fig. 4.
The last fragment of the figure suggests that if, in
a sentence, there is the noun revenue followed by
(i) any word tagged as EVENT, (ii) the noun mil-
lion and (iii) any TIME expression, the EVENT is
probably associated with such TIME expression.
Note that this is not a rule but just a feature receiv-
ing a weight from SVMs based on training data.

Finally, it should be noted that the average run-
ning time of PTK will be O(n), because the new
tree does not contain many repeated node labels.
This is far more efficient than the PTK applied to
BOW trees (see (Moschitti, 2009)).

Inter-Sentence Representation. STR still cannot
encode relations whose arguments are located in
different sentences. Our approach for this problem
is to design two STRs for the sentences contain-
ing the two potential arguments of a relation. For
example, let us suppose that a time expression of
the gain-EVENT in Fig. 3, e.g., late period, is ex-
pressed in the following sentence: The late period
has profit from continuing operations of $4 mil-
lion.

We produce another STR associated with it, as
shown in Fig. 5. This way, we model (e, t) with
a pair of trees (E,T), where e € Fandt € T
(see Sec. 3). Accordingly, we define the kernel
K (p1,p2) over two pairs p; = (E1,T1) and p2 =
<E2,T2,> as: TK(pl,pg) = PTK(El,EQ) +
PTK(T}, T»).

It should be noted that: (i) the additive combina-
tion of kernels is still a valid kernel and it corre-
sponds to the merged fragment space of E and T
trees; (ii) the kernel product can also be applied
but it has shown poor results in previous work
(Moschitti, 2004); and (iii) PTK allows for model-
ing structural features in two sentences located in
different part of the document. Thus, the features
will be pairs of tree fragments from E and T. It is
worth noting that the pairs of BOW and POS trees
used in (Hovy et al., 2012) cause PTK to be too
slow for this setting (although they may achieve
comparable accuracy).

Additionally, the PTK can be combined with a
linear kernel of manually engineered features us-
ing an additive operation. If Z; is the vector rep-
resentation of the manually engineered features of
p;, the kernel combination of PTK and the linear
kernel is PTK(p;, p;) + &; - Z;. The linear features
extracted for the EVENT expression in one sen-
tence and the TIME expression in the other sen-
tence can reconstruct their shared context thanks
to the pairs of tree fragments generated by PTK.
The next section will empirically verify this hy-
pothesis.

S Experiments

In this section, (i) we compare our model against
the state of the art for intra-sentence TERE; and
(i1) we test its validity for ISTERE.

5.1 Setup

We used two corpora: Machine Reading Program
(MRP) corpus to compare with our previous sys-
tem (Hovy et al., 2012) (our baseline) and Time-
Bank data (Pustejovsky et al., 2003), which in con-
trast to MRP data, enables us to train and test our
system with inter-sentence gold standard (GS) an-
notation. During testing, we used GS annotations
for the timestamps and events, i.e., we only clas-
sify which events and time expressions are linked
together.

MRP data. Following our work in (Hovy et al.,
2012), we used the data made available in MRP
related to linking timestamps and events in the in-
telligence community (IC) domain (Strassel et al.,
2010). It is based on news reports about terrorism
taken from the Gigaword corpus. It includes 169
documents containing 2,046 pairs of event and
temporal expressions (505 positive, 1,541 nega-
tive instances) within the same sentence. We in-
creased the original number of event instances by
means of gold event-coreference annotations, i.e.,
two events that co-refer will share their annotated
time expressions; thus we can merge them and in-
crease the size of our gold annotation. As before,
41% of all correct event-time pairs are not in the
same sentence (for relations this ratio is more than
80% of the correct fluent-time links).
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Training Set Validation Set Test Set
Pos. Neg. Total | Pos. | Neg. Total | Pos. Neg. Total
DIST=0 | 1,125 | 2,754 | 3,879 | 155 | 405 560 162 463 625
DIST>0 | 900 | 65,221 | 66,121 | 129 | 9,311 | 9,440 | 182 | 16,600 | 16,782
DIST>0 | 2,025 | 67,975 | 70,000 | 284 | 9,716 | 10,000 | 344 | 17,063 | 17,407

Table 1: Distribution of data in the three TimeBank subsets.

While it allows us to compare with previous
work, the MRP data is not very well suited for
training and testing new systems modeling IS-
TERE. Indeed, almost all inter-sentence pairs of
time/event contain members that (i) are corefer-
ence of either the time or the event and (ii) are
typically located in the same sentence. This means
that, given an accurate system for intra-sentence
TERE and a good coreference resolution system,
ISTERE described in the MRP corpus can be eas-
ily solved. The combined system is still very com-
plex and interesting, but it inevitably falls in the
class of coreference resolution problems. Here we
aim at studying linguistic phenomena directly con-
nected to inter-sentence relations, which go be-
yond coreference resolution. For this reason, we
also ran experiments on a second corpus described
below, which is more suitable to our study.
TimeBank corpus. Distributed by the Linguistic
Data Consortium?, it consists of 183 documents —
news articles from several news sources that have
been annotated with event and time expressions
compliant with the TimeML specification*. We di-
vided the corpus in three subsets containing rela-
tions whose arguments are located in: (i) the same
sentence (DIST=0), (ii) more than one sentence
(DIST>0) and (iii) both previous cases (DIST>0).
The distribution of positive and negative examples
in the training, validation and test sets are reported
in Table 1. It is interesting to note that the distribu-
tion of positive examples in DIST=0, i.e., the intra-
sentence relations, is 30% of all possible pairs. In
contrast, such distribution in DIST>O0, i.e., inter-
sentence relations, drastically reduces to 1.4% of
the pairs occurring in a document. This imbalance
immediately gives the feeling of the complexity of
the ISTERE task.

Learning Model. we used SVM-Light-TK (Mos-
chitti, 2006; Joachims, 1999), which enables
the use of the Partial Tree Kernel (PTK) (Mos-
chitti, 2006). We used the default kernel hyper-
parameters and the margin/error trade-off parame-

SLDC2006T08 at http://www.timeml.org/
site/timebank/documentation-1.2.html

“The inter-annotator agreement numbers are specified in
the referring website

ter to favor replicability of our results, and study
instead the cost-factor parameter as it tunes the
balance between Precision and Recall, which is
very critical for our task (highly skewed datasets).
Measures. We estimated Precision, Recall and
F1 with 10-fold cross-validation for MRP experi-
ments for comparing with (Hovy et al., 2012). For
TimeBank, we drew F1 plots using the random test
set described in Table 1. To estimate the final F1 of
our models, we used 3-fold cross-validation® ap-
plied to the merged train and test set in the table.
In this case the cost-factors were estimated from
the validation set (see the table above), which is
not part of the merged data used for the 3-fold
cross-validation. It should be noted that to cre-
ate the folds and the other subsets, we took care
to not mix RE pairs between the folds or between
training, validation and test set.

5.2 Intra-Sentence TERE: MRP Results

We trained SVMs using PTK applied to STR of
single sentences and also combined with linear
features. We tested a few parameter values of the
Precision/Recall trade-off (cost-factor) on a vali-
dation set then, following (Hovy et al., 2012), we
ran 10-fold cross-validation. The average F1 was
76.84, which is directly comparable with the out-
come we reported in (Hovy et al., 2012), i.e., an
F1 of 76.5 (when linear features are used in com-
bination with tree kernels). It should be noted that:
(i) in (Hovy et al., 2012) we showed that our sys-
tem achieved the same accuracy than the best sys-
tem of TempEval-2; and (ii) our STR provides the
same results of the combination of the two struc-
tures we used in the model above.

Additionally, we tested PTK alone and attained
an F1 of 74.45. This basically suggests that if
we only use tree kernels, we can trade-off several
months of work for manual feature engineering for
a little bit less accurate system. Those unfamil-
iar with structural kernels may think that the time
spent for engineering tree representations is com-
parable to the one spent for engineering features.

>Tt is more suitable than a 10-fold setting for deriving the
final accuracy, given the very low number of positive exam-
ples in DIST>O0.
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However, the abstraction provided by the tree ker-
nels suggests that the effort required in engineer-
ing trees is orders of magnitudes lower. The base-
line system using the manually engineered fea-
tures was designed at IBM and required several
months of manual effort to engineer, code and tune
features. Our expert on kernel methods (who is not
an expert on TERE) modeled STR in 20 minutes
and the implementation only concerned the con-
struction of strings representing trees like those in
fig. 3 and 5. While this is anecdotal evidence, it is
a good indicator of the power of tree kernels.

Furthermore, our experiments show that the
combination of tree kernels and feature vectors is
much more adaptable to variations of the TERE
task and data. This can be observed, for instance,
when considering RE from TimeBank.

5.3 Cost-factor role in ISTERE: TimeBank
We performed the first experiment using DIST=0
data and three different models, Linear (i.e., only
using the manual features), PTK (which in this
case only uses one tree) and their additive com-
bination, i.e., Linear + PTK. In these experiments,
the only critical parameter is the one tuning the
Precision/Recall trade off (cost-factor parameter)
as the high data imbalance between negative and
positive examples can result in imbalanced Preci-
sion and Recall. Thus, we plotted the F1 of the
above models (derived on the test set) according to
a reasonable set of values of such parameter. The
result is shown in Fig. 6. We note that (i) PTK pro-
duces a better F1 than linear features for any pa-
rameter value; (ii) the combination Linear + PTK
highly improves on both achieving an interesting
F1 of 64.35; (iii) in comparison with MRP, where
the best model achieves an F1 of 76.84, the Time-
Bank task appears to be more difficult.

We ran an experiment for DIST>0, which con-
siders only inter-sentence relations. Fig. 7 shows
a similar curve as before, except that manual fea-
tures have a higher accuracy than PTK. The F1,
however, is rather low, indicating the complexity
of the task and the inadequacy of manual features.

As predicted in Sec. 4, the combination of inter-
sentence structural and manual features highly im-
proves on the system F1 achieving a state-of-the-
art value of 38.82 for ISTERE. Although, the re-
sult does not still guarantee a successful use of
the proposed model for real-world applications, it
clearly shows a promising research direction.

Finally, we tested DIST>O, i.e., the complete
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Figure 6: TERE cost-factor impact on DIST=0
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Figure 8: TERE cost-factor impact on DIST> 0

TERE task on entire documents. Fig. 8 shows
comparable performance between PTK and Linear
but again when combined together the improve-
ment is rather high, i.e., up to 10 absolute percent
points (25% of relative improvement on manual
features). It should be noted that the above results
do not indicate the final system accuracy: for this
purpose, the next section shows the 3-fold cross-
validation results using cost-fact values that are
(1) derived from the validation set (not included in
the cross-validation data) and (ii) slightly different
from those optimizing the plot in the figures.
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DIST=0 DIST>0 DIST>0
Linear PTK Lin.+PTK Linear PTK Lin.+PTK Linear PTK Lin.+PTK
Prec. | 36.74+1.3 | 57.24£0.7 | 60.9£3.0 | 185425 | 29.1£5.5 | 29.24+4.4 | 33.8%k1.1 | 34.2+2.5 | 39.8+£2.3
Rec. | 89.4+32 | 424+1.9 | 64.0+29 | 55.545.0 | 20.64+8.2 | 32.3+7.9 | 57.7+1.1 | 46.7£1.5 | 58.4+4.0
F1 52.0+£0.9 | 48.7£1.0 | 62.3+1.7 | 27.7+3.4 | 23.1+£54 | 30.24+4.5 | 42.6£1.0 | 39.44+1.2 | 47.2£1.8

Table 2: 3-fold cross-validation results for DIST=0, DIST >0 and DIST >0 tasks.

5.4 Cross-Validation Results

The previous section demonstrates the superiority
of the combined Linear + PTK model over man-
ual features for any value of the cost-factor pa-
rameter. To assess the significance of this, we
carried out 3-cross-fold cross validation. Table 2
shows the average Precision, Recall and F1 over
the 3-folds along with the associated standard de-
viation (preceded by 4). We note that (i) the
relative improvement over the Linear model de-
rived on DIST=0, about 20%, confirms the results
showed by the plots; and (ii) the relative improve-
ment derived on DIST>0 and DIST>0 is lower,
although still remarkable, i.e., up to 9% and 12%,
respectively. This is probably due to the fact that
2 folds constitute a training set of 58K instances
(for DIST>0), whereas in the plot experiments
the training data contained 70K examples. Evi-
dently the more complex patterns needed for long-
distance TERE require more training data to ex-
press their entire potential. Finally, feature vectors
perform better than structural kernels alone but
this does not contradict the fact that kernels save
potentially large engineering work since: (i) even
if the features had been engineered for MRP and
used for TimeBank, the effort would have been
done in any case whereas kernels almost com-
pletely avoid it; and (ii) the combination largely
improve on the feature vectors: this may avoid the
need of additional work for feature refining.

6 Discussion and Conclusions

Previous work has proposed intra-sentence TERE
models based on manually designed features and
tree kernels. In this paper, we propose new models
for inter-and intra-sentence TERE. We provided a
flexible kernel, which improves efficiency and ca-
pacity of generating meaningful features. It can
be applied to the pairs of all document sentences
for modeling ISTERE. This enables the use of all
possible pairs of tree fragments from the time and
event sentences as features, which improve on the
features manually designed in (Hovy et al., 2012).
For example, the latter cannot capture the relation
with the “document date”, when the time expres-
sions occur in the titles. This kind of features can

be added but a study of the problem and engineer-
ing effort are required. In contrast, our models can
automatically generate such features.

Our experiments on MRP and TimeBank show
that our approach provides high accuracy, up to
20% of relative improvement over state of the art.
The reason for such impressive results is the adapt-
ability and automatic feature engineering proper-
ties of tree kernels. Indeed, new data and settings
pose new challenges to the RE systems, which re-
quire effort in engineering both features and meth-
ods. Our approach alleviates such effort as we can
use a more general-purpose technology.

In this work, our model has been applied to
establish the link between time expressions and
events. However, in general, our model could
be applied to the complete TERE task, thus also
determining the relation types. Interestingly, the
model proposed in (Do et al., 2012) is based on
the pairwise classifiers we study in this paper.
Although, the authors used a different dataset®,
which makes an exact comparison with their sys-
tems difficult, we note that their local pair clas-
sifiers achieved an F1 of 42.13 (no global model,
so the same setting as ours) and an F1 of 46.01
using their global model based on ILP. Our local
pairwise classifier attained an F1 of 47.2, which
can be used as input to the global model to further
boost the overall system accuracy.

Finally, the pairwise approach may be consid-
ered computationally expensive. However, with
modern technology, O(n?) complexity (where 7 is
the number of sentences in a document) is feasible.
PTK is efficient and can be made faster with recent
reverse kernel engineering work (Pighin and Mos-
chitti, 2010; Pighin and Moschitti, 2009).

In summary, the main message of this paper is
that ISTERE is complex, requiring a significant
engineering effort. We have shown that tree ker-
nels are adaptable, requiring less effort and im-
proving on the state of the art in the full TERE
task — relations spanning more than one sentence.

®They annotated a portion of the ACE corpus with (i)
event mention and time interval association, and (ii) the tem-
poral relations between event mentions.
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