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Abstract

This paper proposes state-of-the-art mod-

els for time-event relation extraction

(TERE). The models are specifically de-

signed to work effectively with relations

that span multiple sentences and para-

graphs, i.e., inter-sentence TERE. Our

main idea is: (i) to build a computational

representation of the context of the two

target relation arguments, and (ii) to en-

code it as structural features in Support

Vector Machines using tree kernels. Re-

sults on two data sets – Machine Read-

ing and TimeBank – with 3-fold cross-

validation show that the combination of

traditional feature vectors and the new

structural features improves on the state of

the art for inter-sentence TERE by about

20%, achieving a 30.2 F1 score on inter-

sentence TERE alone, and 47.2 F1 for all

TERE (inter and intra sentence combined).

1 Introduction

Time-Event Relation Extraction (TERE) is the

task of linking event mentions and relation men-

tions to occurrences of “time stamps” in text. We

define it as follows: given a set of textual expres-

sions denoting events and relations, and a set of

time expressions in the same text document, find

all instances of temporal relations between ele-

ments of the two input sets. A relation between

an event and a time expression indicates that the

event occurs within the temporal context specified

by the time expression, for example, the following

sentence:

He succeeded James A. Taylor, who stepped down

as chairman, president and chief executive in

March for health reasons; the appointment took

effect Nov. 13.

conveys two different events, succession and step-

ping down, linked to the time stamps, Nov. 13 and

March, respectively.

In this paper, we focus on the task of linking

time expressions to events, i.e., we carry out a

classification task, where, for each possible pair

of (event/relation, time) in a document, the clas-

sifier decides whether there exists a link between

the two. In particular, we assume that the event

mentions, relation mentions and time expressions

are given to us by an external process. There is a

large body of work on the above topics and they

remain difficult problems, but we use human an-

notated mentions and expressions as input to our

models since TERE itself is a relatively new prob-

lem in this context. Previous work in TempEval-2

(Verhagen et al., 2010) and our work (Hovy et al.,

2012) have shown that accurate relation classifiers

can be modeled with supervised approaches, pro-

vided that the expressions are limited to be in the

same sentence. In contrast, there is almost no pre-

vious work on inter-sentence TERE (ISTERE), for

three main reasons:

• Across a document, the number of time-event

pairs to consider is large, as they are quadratic in

the number of time and event expressions.

• There are almost no practically useful linguis-

tic models that can be applied for capturing inter-

sentence relations.

• Defining inter-sentence features is complex:

their non-optimal definition in a task such as

TERE – where there is a rather high imbalance be-

tween positive and negative examples – results in

underperforming machine learning models.

In this paper, we design novel supervised models

for ISTERE based on a structural representation of

the pairs of sentences that contain the target rela-
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tion arguments. We define methods to deal with

time-event relations, where the text fragment indi-

cating the time expression, e.g., the appointment

took effect Nov. 13 of the example above, is sep-

arated from the main event, e.g., succession and

stepping down. In particular, our representation

is constituted by a pair of shallow syntactic trees

(one for each sentence containing the relation ar-

guments), where their nodes are enriched with se-

mantic labels, i.e., EVENT and TIME. We rely on

automatic feature engineering with structural ker-

nels (see e.g., (Moschitti, 2008; Moschitti, 2009))

to feed the learning algorithm with meaningful

patterns implicitly described by such a representa-

tion. Kernels are applied to our shallow syntactic

representations of text resulting in a model robust

to noise and easily adaptable to new domains and

tasks, such as ISTERE.

We tested our models on Machine Reading and

TimeBank datasets over three different configura-

tions: (i) relation arguments both within the same

sentence, (ii) relation arguments in different sen-

tences and (iii) relation arguments both, within

and across, sentences. Our experiments demon-

strate that such approach is very promising, as it

improves over the state of the art for ISTERE by

up to 20% in F1.

In the remainder of the paper, Sec. 2 surveys the

related work, Sec. 3 presents the previous state-of-

the-art models for intra-sentence TERE also using

structural kernels, Sec. 4 describes our new mod-

els for intra/inter TERE, Sec. 5 lays out the ex-

periments and, finally, Sec. 6 discusses the results

deriving our conclusions.

2 Related Work

The extraction of relations between entities has

been a long-standing topic of research, with work

spanning more than a couple of decades, e.g., ACE

(Doddington et al., 2004) and MUC (Grishman

and Sundheim, 1996).

In particular, sentence-level Relation Extraction

(RE) has been typically modeled with supervised

approaches, using manually annotated data, such

as ACE (Kambhatla, 2004). Most work has fo-

cused on kernel methods, i.e., string and tree ker-

nels (Bunescu and Mooney, 2005; Culotta and

Sorensen, 2004; Zhang et al., 2005; Zhang et

al., 2006) or their combinations (Nguyen et al.,

2009). From the kernel perspective, our approach

to TERE is another variant of the general RE work

using kernel: we use PTK applied to two-level

shallow syntactic trees, which extracts a sort of

hierarchical subsequences. This follows up our

rather long research, e.g., tree kernels for mod-

eling the relations between syntactic constituents

embedded in pairs of text (i.e., question and an-

swer passage) for answer re-ranking (Moschitti et

al., 2007; Moschitti, 2008; Moschitti, 2009; Mos-

chitti and Quarteroni, 2008; Moschitti and Quar-

teroni, 2010). A more computationally expen-

sive solution based on enumerating relational links

between constituents was given in (Zanzotto and

Moschitti, 2006; Zanzotto et al., 2009) for the tex-

tual entailment task. Some faster versions were

provided in (Moschitti and Zanzotto, 2007; Zan-

zotto et al., 2010). More efficient solutions based

on a shallow tree and relational tags were recently

proposed in (Severyn and Moschitti, 2012; Sev-

eryn et al., 2013).

Regarding the more specific task of extraction

of temporal relations, the typical approaches fol-

low similar principles of the above RE methods.

Early work was devoted to ordering events with

respect to one another, e.g., (Chambers and Juraf-

sky, 2008), and detecting their typical durations,

e.g., (Pan et al., 2006). The TempEval work-

shops (Verhagen et al., 2007) defined the task of

(i) extracting temporal relations between events

and time expressions and (ii) naming relations like

BEFORE, AFTER or OVERLAP. We focus on the

first part of the TempEval task, following (Filatova

and Hovy, 2001; Boguraev and Ando, 2005; Hovy

et al., 2012), where we used the the system and re-

sults associated with the latter paper as a baseline

of this paper. (Mirroshandel et al., 2011) used syn-

tactic tree kernels for event-time links in the same

sentence. As we aim at exploring long-distance

RE, we consider more robust representations than

syntactic trees, i.e., shallow syntactic trees, which

we have successfully used in other research, e.g.,

(Severyn and Moschitti, 2012).

A recent challenge, i2b21 2012, also dealing

with ISTERE was carried out in the biomedical

domain. We could not directly compare with the

challenge’s systems as their results were not avail-

able to us during the writing of this paper. Thus,

we can only report on work targeting similar tasks,

e.g., (Mani et al., 2006) used time relations be-

tween events to build a classifier that marks each

pair of events with a temporal relation, exploiting

temporal closure properties; and (ii) (Kolomiyets

1https://www.i2b2.org/pubs/index.html
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Figure 1: A kernel representations of the baseline model constituted by a bag-of-word (BOW) tree

BOW

TIME

TOK

monday

TOK

last

. . .EVENT

TOK

gain

TERM

TOK

revenue

BOW

TIME

TOK

monday

. . .EVENT

TOK

gain

TERM

Figure 2: E.g. features from STK with BOW tree

et al., 2012) proposed to link events via partial or-

dering relations like BEFORE, AFTER, OVER-

LAP and IDENTITY.

Finally, a recent work explicitly tackling the IS-

TERE task is described in (Do et al., 2012). Their

system was based on three classifiers: (i) a local

classifier, which processes all pairs of events and

time expressions in a document and decides which

pairs are linked together; (ii) a classifier between

pairs of events, which determines their relations:

BEFORE, AFTER, OVERLAP and NO RELA-

TION; and (iii) a joint model which, exploiting

global constraints, can highly improve the overall

ISTERE accuracy. We will further comment on

this work in Sec. 6.

3 Baseline Models for TERE

The analysis of previous work has shown that

there is almost no models for ISTERE. Therefore

to align with prior work, we compare with previ-

ous models on standard TERE (extraction within

a sentence). For this purpose, after formally defin-

ing the task, we describe the system we used as

our baseline, which includes two types of features:

(i) those manually designed also called linear fea-

tures and (ii) structural features generated by tree

kernels.

Task Definition. TERE is formally defined as

follows: given the sets of expressions E denot-

ing events or relation mentions, and T describing

time expressions in the same document: (i) build

all pairs 〈e, t〉 where e ∈ E and t ∈ T ; and (ii)

classify 〈e, t〉 to determine if a time-event relation

is held, i.e., if e occurs or holds within the tempo-

ral context specified by t. In our study, we assume

that: (i) a timestamp must be explicitly stated for

each event/relation that we consider to be in a tem-

poral relation; and (ii) every event/relation is as-

sociated with only one time expression whereas a

temporal expression can be linked to one or more

events or relations.

Feature Vectors. We used system and features

defined in our previous work (Hovy et al., 2012),

which in turn are based on the work by (Boguraev

and Ando, 2005). The feature set can be divided

in three different classes: (i) Features associated

with events or relations. These are very similar

to features typically used to represent the context

of entities in traditional relation extraction tasks,

which are primarily syntactic features drawn from

the parser and for reporting verbs. (ii) Features

specific to the temporal expressions. These are pri-

marily designed to capture various properties of

the temporal expressions. For instance, whether

it is a duration, time or date, or whether its pre-

modifiers are among those that indicate the type of

expression. We include also surface features, such

as numeric or non-numeric tokens in the phrase.

(iii) Features describing context around both the

arguments. These are primarily drawn from the

work by Boguraev and Ando, and include features

such as n-grams and syntactic/structural patterns.

The latter also cover syntactic relations between

an event and a temporal expression, ordering of

the two in the sentence, etc.

Tree Kernels. Convolution tree kernels (TK)

compute the number of common substructures be-

tween two trees without explicitly considering the

whole fragment space. TKs are equivalent to a

scalar product between vectors of tree fragments.

Therefore using TK in SVMs is equivalent to use

subtrees as features. Different TKs exist, here we

consider the partial tree kernel (PTK) defined in
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Figure 4: Some of the structural features generated by PTK when applied to the STR of Fig. 3

(Moschitti, 2006), which can count any tree frag-

ments constituted by connected nodes.

Computational Structures. In (Hovy et al.,

2012), we showed that combining manually engi-

neered features with tree kernels produces a bet-

ter model. We also show that exploiting syntactic

information of the sentence containing the rela-

tional expressions is not trivial. Thus, we devel-

oped a bag-of-words (BOW) tree representation

capturing the context of the target time/event ex-

pressions. The latter were marked-up with labels

such as EVENT (or equivalently RELATION) and

TIME. Figure 1 illustrates an example of the tree

representations for the sentence:

Revenue gained 13% to $77.3 million from $68.5

million last Monday.

Such BOW tree is constituted by: (i) a root

node; (ii) a conceptual level, which specifies

the semantic type in the sentence, i.e., TERM,

TIME or EVENT expressions; (iii) a token

node level (TOK); and the lexical level, list-

ing the words of the constituents. PTK ap-

plied to such trees generates features, such

as [TIME [last][monday]] and [TIME

[[monday]] or more interesting features like

those shown in Figure 2. For example, such

features can learn the pattern: revenue,

EVENT gain, ∗, last, TIME.

It should be noted that such a tree represents

only one relation. In case a sentence contains

more than one event/relation, separate trees for

each must be generated (each will be a separate

training/test instance). Such trees differ in the po-

sition of the EVENT/RELATION nodes (at level

1 of the tree).

Finally, in (Hovy et al., 2012) we showed that

this model significantly improves over manually

engineered features. However, to exploit syntac-

tic information, we defined another separate tree

with POS-tag nodes in place of words causing the

features coming from different trees to be disjoint.

This model cannot be applied for ISTERE as the

large number of identical nodes, TERM and TOK

would cause the PTK computational complexity

to degenerate to O(n2) (see (Moschitti, 2009)).

4 Models for Inter-Sentence TERE

We describe here our new representation, which

is an improvement over our previous models on

intra-sentence TERE and, more importantly, can

be used for ISTERE.

Intra-Sentence Representation. We improve

on the previous work by reformulating the BOW

tree as follows:

1. We remove the TERM and TOK levels and we

propose only two levels — the POS-tag and the

word sequences.

2. The annotation of the target time or event

expression is directly performed on the POS-tag

node.

For example, Fig. 3 shows the transformation of

the trees in Fig. 1 to the new representation. The

event gain and the time expression last monday

are marked at POS-tag level2. This also compacts

the segmentation of time expressions. As a result,

the application of PTK to the new sentence tree

2The POS tagset is the one used in the IBM Watson sys-
tem (Ferrucci et al., 2010).
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event, it forms the representation pair, input to the kernel used for ISTERE.

representation (STR) generates very powerful and

compact features, e.g., those described in Fig. 4.

The last fragment of the figure suggests that if, in

a sentence, there is the noun revenue followed by

(i) any word tagged as EVENT, (ii) the noun mil-

lion and (iii) any TIME expression, the EVENT is

probably associated with such TIME expression.

Note that this is not a rule but just a feature receiv-

ing a weight from SVMs based on training data.

Finally, it should be noted that the average run-

ning time of PTK will be O(n), because the new

tree does not contain many repeated node labels.

This is far more efficient than the PTK applied to

BOW trees (see (Moschitti, 2009)).

Inter-Sentence Representation. STR still cannot

encode relations whose arguments are located in

different sentences. Our approach for this problem

is to design two STRs for the sentences contain-

ing the two potential arguments of a relation. For

example, let us suppose that a time expression of

the gain-EVENT in Fig. 3, e.g., late period, is ex-

pressed in the following sentence: The late period

has profit from continuing operations of $4 mil-

lion.

We produce another STR associated with it, as

shown in Fig. 5. This way, we model 〈e, t〉 with

a pair of trees 〈E, T 〉, where e ∈ E and t ∈ T

(see Sec. 3). Accordingly, we define the kernel

K(p1, p2) over two pairs p1 = 〈E1, T1〉 and p2 =
〈E2, T2, 〉 as: TK(p1, p2) = PTK(E1, E2) +
PTK(T1, T2).
It should be noted that: (i) the additive combina-

tion of kernels is still a valid kernel and it corre-

sponds to the merged fragment space of E and T

trees; (ii) the kernel product can also be applied

but it has shown poor results in previous work

(Moschitti, 2004); and (iii) PTK allows for model-

ing structural features in two sentences located in

different part of the document. Thus, the features

will be pairs of tree fragments from E and T. It is

worth noting that the pairs of BOW and POS trees

used in (Hovy et al., 2012) cause PTK to be too

slow for this setting (although they may achieve

comparable accuracy).

Additionally, the PTK can be combined with a

linear kernel of manually engineered features us-

ing an additive operation. If *xi is the vector rep-

resentation of the manually engineered features of

pi, the kernel combination of PTK and the linear

kernel is PTK(pi, pj)+*xi ·*xj . The linear features

extracted for the EVENT expression in one sen-

tence and the TIME expression in the other sen-

tence can reconstruct their shared context thanks

to the pairs of tree fragments generated by PTK.

The next section will empirically verify this hy-

pothesis.

5 Experiments

In this section, (i) we compare our model against

the state of the art for intra-sentence TERE; and

(ii) we test its validity for ISTERE.

5.1 Setup

We used two corpora: Machine Reading Program

(MRP) corpus to compare with our previous sys-

tem (Hovy et al., 2012) (our baseline) and Time-

Bank data (Pustejovsky et al., 2003), which in con-

trast to MRP data, enables us to train and test our

system with inter-sentence gold standard (GS) an-

notation. During testing, we used GS annotations

for the timestamps and events, i.e., we only clas-

sify which events and time expressions are linked

together.

MRP data. Following our work in (Hovy et al.,

2012), we used the data made available in MRP

related to linking timestamps and events in the in-

telligence community (IC) domain (Strassel et al.,

2010). It is based on news reports about terrorism

taken from the Gigaword corpus. It includes 169
documents containing 2, 046 pairs of event and

temporal expressions (505 positive, 1, 541 nega-

tive instances) within the same sentence. We in-

creased the original number of event instances by

means of gold event-coreference annotations, i.e.,

two events that co-refer will share their annotated

time expressions; thus we can merge them and in-

crease the size of our gold annotation. As before,

41% of all correct event-time pairs are not in the

same sentence (for relations this ratio is more than

80% of the correct fluent-time links).
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Training Set Validation Set Test Set
Pos. Neg. Total Pos. Neg. Total Pos. Neg. Total

DIST=0 1,125 2,754 3,879 155 405 560 162 463 625
DIST>0 900 65,221 66,121 129 9,311 9,440 182 16,600 16,782
DIST≥0 2,025 67,975 70,000 284 9,716 10,000 344 17,063 17,407

Table 1: Distribution of data in the three TimeBank subsets.

While it allows us to compare with previous

work, the MRP data is not very well suited for

training and testing new systems modeling IS-

TERE. Indeed, almost all inter-sentence pairs of

time/event contain members that (i) are corefer-

ence of either the time or the event and (ii) are

typically located in the same sentence. This means

that, given an accurate system for intra-sentence

TERE and a good coreference resolution system,

ISTERE described in the MRP corpus can be eas-

ily solved. The combined system is still very com-

plex and interesting, but it inevitably falls in the

class of coreference resolution problems. Here we

aim at studying linguistic phenomena directly con-

nected to inter-sentence relations, which go be-

yond coreference resolution. For this reason, we

also ran experiments on a second corpus described

below, which is more suitable to our study.

TimeBank corpus. Distributed by the Linguistic

Data Consortium3, it consists of 183 documents –

news articles from several news sources that have

been annotated with event and time expressions

compliant with the TimeML specification4. We di-

vided the corpus in three subsets containing rela-

tions whose arguments are located in: (i) the same

sentence (DIST=0), (ii) more than one sentence

(DIST>0) and (iii) both previous cases (DIST≥0).

The distribution of positive and negative examples

in the training, validation and test sets are reported

in Table 1. It is interesting to note that the distribu-

tion of positive examples in DIST=0, i.e., the intra-

sentence relations, is 30% of all possible pairs. In

contrast, such distribution in DIST>0, i.e., inter-

sentence relations, drastically reduces to 1.4% of

the pairs occurring in a document. This imbalance

immediately gives the feeling of the complexity of

the ISTERE task.

Learning Model. we used SVM-Light-TK (Mos-

chitti, 2006; Joachims, 1999), which enables

the use of the Partial Tree Kernel (PTK) (Mos-

chitti, 2006). We used the default kernel hyper-

parameters and the margin/error trade-off parame-

3LDC2006T08 at http://www.timeml.org/

site/timebank/documentation-1.2.html
4The inter-annotator agreement numbers are specified in

the referring website

ter to favor replicability of our results, and study

instead the cost-factor parameter as it tunes the

balance between Precision and Recall, which is

very critical for our task (highly skewed datasets).

Measures. We estimated Precision, Recall and

F1 with 10-fold cross-validation for MRP experi-

ments for comparing with (Hovy et al., 2012). For

TimeBank, we drew F1 plots using the random test

set described in Table 1. To estimate the final F1 of

our models, we used 3-fold cross-validation5 ap-

plied to the merged train and test set in the table.

In this case the cost-factors were estimated from

the validation set (see the table above), which is

not part of the merged data used for the 3-fold

cross-validation. It should be noted that to cre-

ate the folds and the other subsets, we took care

to not mix RE pairs between the folds or between

training, validation and test set.

5.2 Intra-Sentence TERE: MRP Results

We trained SVMs using PTK applied to STR of

single sentences and also combined with linear

features. We tested a few parameter values of the

Precision/Recall trade-off (cost-factor) on a vali-

dation set then, following (Hovy et al., 2012), we

ran 10-fold cross-validation. The average F1 was

76.84, which is directly comparable with the out-

come we reported in (Hovy et al., 2012), i.e., an

F1 of 76.5 (when linear features are used in com-

bination with tree kernels). It should be noted that:

(i) in (Hovy et al., 2012) we showed that our sys-

tem achieved the same accuracy than the best sys-

tem of TempEval-2; and (ii) our STR provides the

same results of the combination of the two struc-

tures we used in the model above.

Additionally, we tested PTK alone and attained

an F1 of 74.45. This basically suggests that if

we only use tree kernels, we can trade-off several

months of work for manual feature engineering for

a little bit less accurate system. Those unfamil-

iar with structural kernels may think that the time

spent for engineering tree representations is com-

parable to the one spent for engineering features.

5It is more suitable than a 10-fold setting for deriving the
final accuracy, given the very low number of positive exam-
ples in DIST>0.
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However, the abstraction provided by the tree ker-

nels suggests that the effort required in engineer-

ing trees is orders of magnitudes lower. The base-

line system using the manually engineered fea-

tures was designed at IBM and required several

months of manual effort to engineer, code and tune

features. Our expert on kernel methods (who is not

an expert on TERE) modeled STR in 20 minutes

and the implementation only concerned the con-

struction of strings representing trees like those in

fig. 3 and 5. While this is anecdotal evidence, it is

a good indicator of the power of tree kernels.

Furthermore, our experiments show that the

combination of tree kernels and feature vectors is

much more adaptable to variations of the TERE

task and data. This can be observed, for instance,

when considering RE from TimeBank.

5.3 Cost-factor role in ISTERE: TimeBank

We performed the first experiment using DIST=0

data and three different models, Linear (i.e., only

using the manual features), PTK (which in this

case only uses one tree) and their additive com-

bination, i.e., Linear + PTK. In these experiments,

the only critical parameter is the one tuning the

Precision/Recall trade off (cost-factor parameter)

as the high data imbalance between negative and

positive examples can result in imbalanced Preci-

sion and Recall. Thus, we plotted the F1 of the

above models (derived on the test set) according to

a reasonable set of values of such parameter. The

result is shown in Fig. 6. We note that (i) PTK pro-

duces a better F1 than linear features for any pa-

rameter value; (ii) the combination Linear + PTK

highly improves on both achieving an interesting

F1 of 64.35; (iii) in comparison with MRP, where

the best model achieves an F1 of 76.84, the Time-

Bank task appears to be more difficult.

We ran an experiment for DIST>0, which con-

siders only inter-sentence relations. Fig. 7 shows

a similar curve as before, except that manual fea-

tures have a higher accuracy than PTK. The F1,

however, is rather low, indicating the complexity

of the task and the inadequacy of manual features.

As predicted in Sec. 4, the combination of inter-

sentence structural and manual features highly im-

proves on the system F1 achieving a state-of-the-

art value of 38.82 for ISTERE. Although, the re-

sult does not still guarantee a successful use of

the proposed model for real-world applications, it

clearly shows a promising research direction.

Finally, we tested DIST≥0, i.e., the complete
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Figure 6: TERE cost-factor impact on DIST=0
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Figure 7: TERE cost-factor impact on DIST>0
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Figure 8: TERE cost-factor impact on DIST≥ 0

TERE task on entire documents. Fig. 8 shows

comparable performance between PTK and Linear

but again when combined together the improve-

ment is rather high, i.e., up to 10 absolute percent

points (25% of relative improvement on manual

features). It should be noted that the above results

do not indicate the final system accuracy: for this

purpose, the next section shows the 3-fold cross-

validation results using cost-fact values that are

(i) derived from the validation set (not included in

the cross-validation data) and (ii) slightly different

from those optimizing the plot in the figures.
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DIST=0 DIST>0 DIST≥0
Linear PTK Lin.+PTK Linear PTK Lin.+PTK Linear PTK Lin.+PTK

Prec. 36.7±1.3 57.2±0.7 60.9±3.0 18.5±2.5 29.1±5.5 29.2±4.4 33.8±1.1 34.2±2.5 39.8±2.3
Rec. 89.4±3.2 42.4±1.9 64.0±2.9 55.5±5.0 20.6±8.2 32.3±7.9 57.7±1.1 46.7±1.5 58.4±4.0
F1 52.0±0.9 48.7±1.0 62.3±1.7 27.7±3.4 23.1±5.4 30.2±4.5 42.6±1.0 39.4±1.2 47.2±1.8

Table 2: 3-fold cross-validation results for DIST=0, DIST>0 and DIST≥0 tasks.

5.4 Cross-Validation Results

The previous section demonstrates the superiority

of the combined Linear + PTK model over man-

ual features for any value of the cost-factor pa-

rameter. To assess the significance of this, we

carried out 3-cross-fold cross validation. Table 2

shows the average Precision, Recall and F1 over

the 3-folds along with the associated standard de-

viation (preceded by ±). We note that (i) the

relative improvement over the Linear model de-

rived on DIST=0, about 20%, confirms the results

showed by the plots; and (ii) the relative improve-

ment derived on DIST>0 and DIST≥0 is lower,

although still remarkable, i.e., up to 9% and 12%,

respectively. This is probably due to the fact that

2 folds constitute a training set of 58K instances

(for DIST≥0), whereas in the plot experiments

the training data contained 70K examples. Evi-

dently the more complex patterns needed for long-

distance TERE require more training data to ex-

press their entire potential. Finally, feature vectors

perform better than structural kernels alone but

this does not contradict the fact that kernels save

potentially large engineering work since: (i) even

if the features had been engineered for MRP and

used for TimeBank, the effort would have been

done in any case whereas kernels almost com-

pletely avoid it; and (ii) the combination largely

improve on the feature vectors: this may avoid the

need of additional work for feature refining.

6 Discussion and Conclusions

Previous work has proposed intra-sentence TERE

models based on manually designed features and

tree kernels. In this paper, we propose new models

for inter-and intra-sentence TERE. We provided a

flexible kernel, which improves efficiency and ca-

pacity of generating meaningful features. It can

be applied to the pairs of all document sentences

for modeling ISTERE. This enables the use of all

possible pairs of tree fragments from the time and

event sentences as features, which improve on the

features manually designed in (Hovy et al., 2012).

For example, the latter cannot capture the relation

with the “document date”, when the time expres-

sions occur in the titles. This kind of features can

be added but a study of the problem and engineer-

ing effort are required. In contrast, our models can

automatically generate such features.

Our experiments on MRP and TimeBank show

that our approach provides high accuracy, up to

20% of relative improvement over state of the art.

The reason for such impressive results is the adapt-

ability and automatic feature engineering proper-

ties of tree kernels. Indeed, new data and settings

pose new challenges to the RE systems, which re-

quire effort in engineering both features and meth-

ods. Our approach alleviates such effort as we can

use a more general-purpose technology.

In this work, our model has been applied to

establish the link between time expressions and

events. However, in general, our model could

be applied to the complete TERE task, thus also

determining the relation types. Interestingly, the

model proposed in (Do et al., 2012) is based on

the pairwise classifiers we study in this paper.

Although, the authors used a different dataset6,

which makes an exact comparison with their sys-

tems difficult, we note that their local pair clas-

sifiers achieved an F1 of 42.13 (no global model,

so the same setting as ours) and an F1 of 46.01

using their global model based on ILP. Our local

pairwise classifier attained an F1 of 47.2, which

can be used as input to the global model to further

boost the overall system accuracy.

Finally, the pairwise approach may be consid-

ered computationally expensive. However, with

modern technology, O(n2) complexity (where n is

the number of sentences in a document) is feasible.

PTK is efficient and can be made faster with recent

reverse kernel engineering work (Pighin and Mos-

chitti, 2010; Pighin and Moschitti, 2009).

In summary, the main message of this paper is

that ISTERE is complex, requiring a significant

engineering effort. We have shown that tree ker-

nels are adaptable, requiring less effort and im-

proving on the state of the art in the full TERE

task – relations spanning more than one sentence.

6They annotated a portion of the ACE corpus with (i)
event mention and time interval association, and (ii) the tem-
poral relations between event mentions.

1337



Acknowledgements

This research is partially supported by the EU’s 7th

Framework Program (FP7/2007-2013) (#288024

LIMOSINE project) and an Open Collaborative

Research (OCR) award from IBM Research.

References
Branimir Boguraev and Rie Kubota Ando. 2005.

Timeml-compliant text analysis for temporal reason-
ing. In Proceedings of IJCAI.

R. Bunescu and R. Mooney. 2005. A shortest path
dependency kernel for relation extraction. In Pro-
ceedings of HLT-EMNLP.

N. Chambers and D. Jurafsky. 2008. Unsupervised
learning of narrative event chains. In Proceedings of
ACL-08: HLT.

A. Culotta and J. Sorensen. 2004. Dependency tree
kernels for relation extraction. In ACL.

Q. Do, W. Lu, and D. Roth. 2012. Joint inference for
event timeline construction. In the joint EMNLP and
CoNLL conference.

G. Doddington, A. Mitchell, M. Przybocki, L.
Ramshaw, S. Strassel, and R. Weischedel. 2004.
The automatic content extraction program – tasks,
data and evaluation. In LREC.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D.
Gondek, A. Kalyanpur, A. Lally, J. W. Murdock,
E. Nyberg, J. Prager, N. Schlaefer, and C. Welty.
2010. Building watson: An overview of the deepqa
project. AI Magazine, 31(3).

E. Filatova and E. Hovy. 2001. Assigning time-stamps
to event-clauses. In the workshop on Temporal and
spatial information processing.

R. Grishman and B. Sundheim. 1996. Message Under-
standing Conference - 6: A Brief History. In Coling.

D. Hovy, J. Fan, A. Gliozzo, S. Patwardhan, and C.
Welty. 2012. When did that happen? – linking
events and relations to timestamps. In EACL.

T. Joachims. 1999. Making large-scale SVM learning
practical. Advances in Kernel Methods – Support
Vector Learning, 13.

N. Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy mod-
els for information extraction. In ACL.

O. Kolomiyets, S. Bethard, and M.-F. Moens. 2012.
Extracting narrative timelines as temporal depen-
dency structures. In ACL.

I. Mani, M. Verhagen, B. Wellner, C. M. Lee, and J.
Pustejovsky. 2006. Machine learning of temporal
relations. In ACL.

S. A. Mirroshandel, M. Khayyamian, and G. Ghassem-
Sani. 2011. Syntactic tree kernels for event-time
temporal relation learning. HLT.

A. Moschitti and S. Quarteroni. 2008. Kernels on Lin-
guistic Structures for Answer Extraction. In ACL.

A. Moschitti and S. Quarteroni. 2010. Linguistic Ker-
nels for Answer Re-ranking in Question Answering
Systems. Information Processing & Management.

A. Moschitti and F. M. Zanzotto. 2007. Fast and ef-
fective kernels for relational learning from texts. In
ICML.

A. Moschitti, S. Quarteroni, R. Basili, and S. Man-
andhar. 2007. Exploiting syntactic and shallow se-
mantic kernels for question/answer classification. In
ACL.

A. Moschitti. 2004. A study on convolution kernels
for shallow semantic parsing. In ACL.

A. Moschitti. 2006. Efficient convolution kernels
for dependency and constituent syntactic trees. In
ECML.

A. Moschitti. 2008. Kernel methods, syntax and se-
mantics for relational text categorization. In CIKM.

A. Moschitti. 2009. Syntactic and Semantic Kernels
for Short Text Pair Categorization. In EACL.

T.-V. T. Nguyen, A. Moschitti, and G. Riccardi. 2009.
Convolution kernels on constituent, dependency and
sequential structures for relation extraction. In
EMNLP.

F. Pan, R. Mulkar, and J. R. Hobbs. 2006. Learning
event durations from event descriptions. In Coling-
ACL.

D. Pighin and A. Moschitti. 2009. Reverse engineer-
ing of tree kernel feature spaces. In EMNLP.

D. Pighin and A. Moschitti. 2010. On reverse feature
engineering of syntactic tree kernels. In CoNLL.

J. Pustejovsky, P. Hanks, R. Saurı́, A. See, R.
Gaizauskas, A. Setzer, D. Radev, B. Sundheim, D.
Day, L. Ferro, and M. Lazo. The TIMEBANK Cor-
pus.

A. Severyn and A. Moschitti. 2012. Structural re-
lationships for large-scale learning of answer re-
ranking. In SIGIR.

A. Severyn, M. Nicosia, and A. Moschitti. 2013.
Learning adaptable patterns for passage reranking.
In CoNLL.

S. Strassel, D. Adams, H. Goldberg, J. Herr, R.
Keesing, D. Oblinger, H. Simpson, R. Schrag, and
J. Wright. 2010. The DARPA MRP. In LREC.

M. Verhagen, R. Gaizauskas, F. Schilder, M. Hepple,
G. Katz, and J. Pustejovsky. 2007. Semeval-2007
task 15: Tempeval temporal relation identification.
In the Workshop on Sem. Ev..

M. Verhagen, R. Sauri, T. Caselli, and J. Pustejovsky.
2010. Semeval-2010 task 13: Tempeval-2. In the
Workshop on Sem. Evaluation.

F. M. Zanzotto and A. Moschitti. 2006. Automatic
Learning of Textual Entailments with Cross-Pair
Similarities. In COLING-ACL.

F. M. Zanzotto, M. Pennacchiotti, and A. Moschitti.
2009. A Machine Learning Approach to Recogniz-
ing Textual Entailment. JNLE.

F. M. Zanzotto, L. Dell’Arciprete, and A. Moschitti.
2010. Efficient graph kernels for textual entailment
recognition. Fundamenta Informaticae, 2010.

M. Zhang, J. Su, D. Wang, G. Zhou, and C. L. Tan.
2005. Discovering relations between named entities
from a large raw corpus using tree similarity-based
clustering. In Proc. of IJCNLP.

M. Zhang, J. Zhang, J. Su, and G. Zhou. 2006. A com-
posite kernel to extract relations between entities
with both flat and structured features. In COLING-
ACL.

1338


