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Abstract

Information Extraction (IE) systems that
extract role fillers for events typically look
at the local context surrounding a phrase
when deciding whether to extract it. Of-
ten, however, role fillers occur in clauses
that are not directly linked to an event
word. We present a new model for event
extraction that jointly considers both the
local context around a phrase along with
the wider sentential context in a proba-
bilistic framework. Our approach uses a
sentential event recognizer and a plausible
role-filler recognizer that is conditioned on
event sentences. We evaluate our system
on two IE data sets and show that our
model performs well in comparison to ex-
isting IE systems that rely on local phrasal
context.

1 Introduction

Information Extraction (IE) systems typically use
extraction patterns (e.g., Soderland et al. (1995),
Riloff (1996), Yangarber et al. (2000), Califf
and Mooney (2003)) or classifiers (e.g., Freitag
(1998), Freitag and McCallum (2000), Chieu et al.
(2003), Bunescu and Mooney (2004)) to extract
role fillers for events. Most IE systems consider
only the immediate context surrounding a phrase
when deciding whether to extract it. For tasks such
as named entity recognition, immediate context is
usually sufficient. But for more complex tasks,
such as event extraction, a larger field of view is
often needed to understand how facts tie together.

Most IE systems are designed to identify role
fillers that appear as arguments to event verbs
or nouns, either explicitly via syntactic relations
or implicitly via proximity (e.g., John murdered
Tom or the murder of Tom by John). But many
facts are presented in clauses that do not contain

event words, requiring discourse relations or deep
structural analysis to associate the facts with event
roles. For example, consider the sentences below:

Seven people have died

...and 30 were injured in India after terror-
ists launched an attack on the Taj Hotel.

...in Mexico City and its surrounding sub-
urbs in a Swine Flu outbreak.

... after a tractor-trailer collided with a bus
in Arkansas.

Two bridges were destroyed

...in Baghdad last night in a resurgence of
bomb attacks in the capital city.

... and $50 million in damage was caused by
a hurricane that hit Miami on Friday.

...to make way for modern, safer bridges
that will be constructed early next year.

These examples illustrate a common phenomenon
in text where information is not explicitly stated
as filling an event role, but readers have no trou-
ble making this inference. The role fillers above
(seven people, two bridges) occur as arguments to
verbs that reveal state information (death, destruc-
tion) but are not event-specific (i.e., death and de-
struction can result from a wide variety of incident
types). IE systems often fail to extract these role
fillers because these systems do not recognize the
immediate context as being relevant to the specific
type of event that they are looking for.

We propose a new model for information ex-
traction that incorporates both phrasal and senten-
tial evidence in a unified framework. Our uni-
fied probabilistic model, called GLACIER, consists
of two components: a model for sentential event
recognition and a model for recognizing plausi-
ble role fillers. The Sentential Event Recognizer
offers a probabilistic assessment of whether a sen-
tence is discussing a domain-relevant event. The



Plausible Role-Filler Recognizer is then condi-
tioned to identify phrases as role fillers based upon
the assumption that the surrounding context is dis-
cussing a relevant event. This unified probabilistic
model allows the two components to jointly make
decisions based upon both the local evidence sur-
rounding each phrase and the “peripheral vision”
afforded by the sentential event recognizer.

This paper is organized as follows. Section
2 positions our research with respect to related
work. Section 3 presents our unified probabilistic
model for information extraction. Section 4 shows
experimental results on two IE data sets, and Sec-
tion 5 discusses directions for future work.

2 Related Work

Many event extraction systems rely heavily on the
local context around words or phrases that are can-
didates for extraction. Some systems use extrac-
tion patterns (Soderland et al., 1995; Riloff, 1996;
Yangarber et al., 2000; Califf and Mooney, 2003),
which represent the immediate contexts surround-
ing candidate extractions. Similarly, classifier-
based approaches (Freitag, 1998; Freitag and Mc-
Callum, 2000; Chieu et al., 2003; Bunescu and
Mooney, 2004) rely on features in the immedi-
ate context of the candidate extractions. Our work
seeks to incorporate additional context into IE.

Indeed, several recent approaches have shown
the need for global information to improve IE per-
formance. Maslennikov and Chua (2007) use dis-
course trees and local syntactic dependencies in
a pattern-based framework to incorporate wider
context. Finkel et al. (2005) and Ji and Grish-
man (2008) incorporate global information by en-
forcing event role or label consistency over a doc-
ument or across related documents. In contrast,
our approach simply creates a richer IE model for
individual extractions by expanding the “field of
view” to include the surrounding sentence.

The two components of the unified model pre-
sented in this paper are somewhat similar to our
previous work (Patwardhan and Riloff, 2007),
where we employ a relevant region identification
phase prior to pattern-based extraction. In that
work we adopted a pipeline paradigm, where a
classifier identifies relevant sentences and only
those sentences are fed to the extraction module.
Our unified probabilistic model described in this
paper does not draw a hard line between rele-
vant and irrelevant sentences, but gently balances

the influence of both local and sentential contexts
through probability estimates.

3 A Unified IE Model that Combines
Phrasal and Sentential Evidence

We introduce a probabilistic model for event-
based IE that balances the influence of two kinds
of contextual information. Our goal is to create
a model that has the flexibility to make extraction
decisions based upon strong evidence from the lo-
cal context, or strong evidence from the wider con-
text coupled with a more general local context. For
example, some phrases explicitly refer to an event,
so they almost certainly warrant extraction regard-
less of the wider context (e.g., terrorists launched
an attack).! In contrast, some phrases are poten-
tially relevant but too general to warrant extrac-
tion on their own (e.g., people died could be the
result of different incident types). If we are confi-
dent that the sentence discusses an event of inter-
est, however, then such phrases could be reliably
extracted.

Our unified model for IE (GLACIER) combines
two types of contextual information by incorpo-
rating it into a probabilistic framework. To deter-
mine whether a noun phrase instance NP; should
be extracted as a filler for an event role, GLACIER
computes the joint probability that NP;:

(1) appears in an event sentence, and
(2) is a legitimate filler for the event role.

Thus, GLACIER is designed for noun phrase ex-
traction and, mathematically, its decisions are
based on the following joint probability:

P(EvSent(Snp,), PlausFillr(NP;))

where Sy p, is the sentence containing noun phrase
NP;. This probability estimate is based on con-
textual features F' appearing within Syp, and in
the local context of NP;. Including F' in the joint
probability, and applying the product rule, we can
split our probability into two components:

P(EvSent(Snp,), PlausFillr(NP;)|F) =
P(EvSent(Snp,)|F)
«  P(PlausFillr(NP;)|EvSent(Syp,), F')
These two probability components, in the expres-
sion above, form the basis of the two modules in

"There are always exceptions of course, such as hypothet-
ical statements, but they are relatively uncommon.



our IE system — the sentential event recognizer and
the plausible role-filler recognizer. In arriving at
a decision to extract a noun phrase, our unified
model for IE uses these modules to estimate the
two probabilities based on the set of contextual
features F'. Note that having these two probability
components allows the system to gently balance
the influence from the sentential and phrasal con-
texts, without having to make hard decisions about
sentence relevance or phrases in isolation.

In this system, the sentential event recog-
nizer is embodied in the probability compo-
nent P(EvSent(Syp,)|F). This is essentially
the probability of a sentence describing a rel-
evant event. Similarly, the plausible role-
filler recognizer is embodied by the probabil-
ity P(PlausFillr(NP;)|EvSent(Snp,), F'). This
component, therefore, estimates the probability
that a noun phrase fills a specific event role, as-
suming that the noun phrase occurs in an event
sentence. Many different techniques could be used
to produce these probability estimates. In the rest
of this section, we present the specific models that
we used for each of these components.

3.1 Plausible Role-Filler Recognizer

The plausible role-filler recognizer is similar to
most traditional IE systems, where the goal is to
determine whether a noun phrase can be a legiti-
mate filler for a specific type of event role based on
its local context. Pattern-based approaches match
the context surrounding a phrase using lexico-
syntactic patterns or rules. However, most of these
approaches do not produce probability estimates
for the extractions. Classifier-based approaches
use machine learning classifiers to make extrac-
tion decisions, based on features associated with
the local context. Any classifier that can generate
probability estimates, or similar confidence val-
ues, could be plugged into our model.

In our work, we use a Naive Bayes classifier as
our plausible role-filler recognizer. The probabili-
ties are computed using a generative Naive Bayes
framework, based on local contextual features sur-
rounding a noun phrase. These clues include lexi-
cal matches, semantic features, and syntactic rela-
tions, and will be described in more detail in Sec-
tion 3.3. The Naive Bayes (NB) plausible role-
filler recognizer is defined as follows:

P(PlausFillr(NP;)|EvSent(Snp,), F') =

1
EP(PlausFillr(NPi) | EvSent(Snp,)) *

H P(fi|PlausFillr(NP;), EvSent(Snp,))
fieF

where F' is the set of local contextual features
and Z is the normalizing constant. The prior
P(PlausF'illr(NP;)|EvSent(Snp,)) is estimated
from the fraction of role fillers in the training data.
The product term in the equation is the likelihood,
which makes the simplifying assumption that all
of the features in F' are independent of one an-
other. It is important to note that these probabil-
ities are conditioned on the noun phrase NP; ap-
pearing in an event sentence.

Most IE systems need to extract several differ-
ent types of role fillers for each event. For in-
stance, to extract information about terrorist inci-
dents a system may extract the names of perpetra-
tors, victims, targets, and weapons. We create a
separate IE model for each type of event role. To
construct a unified IE model for an event role, we
must specifically create a plausible role-filler rec-
ognizer for that event role, but we can use a single
sentential event recognizer for all of the role filler

types.

3.2 Sentential Event Recognizer

The task at hand for the sentential event recognizer
is to analyze features in a sentence and estimate
the probability that the sentence is discussing a
relevant event. This is very similar to the task per-
formed by text classification systems, with some
minor differences. Firstly, we are dealing with
the classification of sentences, as opposed to en-
tire documents. Secondly, we need to generate a
probability estimate of the “class”, and not just
a class label. Like the plausible role-filler recog-
nizer, here too we employ machine learning clas-
sifiers to estimate the desired probabilities.

3.2.1 Naive Bayes Event Recognizer

Since Naive Bayes classifiers estimate class prob-
abilities, we employ such a classifier to create a
sentential event recognizer:

P(EvSent(Snp,)|F) =
1
EP(EvSent(SNpi))

% H P(f;|EvSent(Snp,))
fier

where Z is the normalizing constant and F' is the
set of contextual features in the sentence. The



prior P(EvSentg(yp,)) is obtained from the ra-
tio of event and non-event sentences in the train-
ing data. The product term in the equation is the
likelihood, which makes the simplifying assump-
tion that the features in F' are independent of one
another. The features used by the model will be
described in Section 3.3.

A known issue with Naive Bayes classifiers is
that, even though their classification accuracy is
often quite reasonable, their probability estimates
are often poor (Domingos and Pazzani, 1996;
Zadrozny and Elkan, 2001; Manning et al., 2008).
The problem is that these classifiers tend to overes-
timate the probability of the predicted class, result-
ing in a situation where most probability estimates
from the classifier tend to be either extremely close
to 0.0 or extremely close to 1.0. We observed this
problem in our classifier too, so we decided to ex-
plore an additional model to estimate probabilities
for the sentential event recognizer. This second
model, based on SVMs, is described next.

3.2.2 SVM Event Recognizer

Given the all-or-nothing nature of the probability
estimates that we observed from the Naive Bayes
model, we decided to try using a Support Vector
Machine (SVM) (Vapnik, 1995; Joachims, 1998)
classifier as an alternative to Naive Bayes. One
of the issues with doing this is that SVMs are not
probabilistic classifiers. SVMs make classification
decisions using on a decision boundary defined by
support vectors identified during training. A deci-
sion function is applied to unseen test examples
to determine which side of the decision bound-
ary those examples lie. While the values obtained
from the decision function only indicate class as-
signments for the examples, we used these val-
ues to produce confidence scores for our sentential
event recognizer.

To produce a confidence score from the SVM
classifier, we take the values generated by the deci-
sion function for each test instance and normalize
them based on the minimum and maximum values
produced across all of the test instances. This nor-
malization process produces values between 0 and
1 that we use as a rough indicator of the confidence
in the SVM'’s classification. We observed that we
could effect a consistent recall/precision trade-off
by using these values as thresholds for classifica-
tion decisions, which suggests that this approach
worked reasonably well for our task.

3.3 Contextual Features

We used a variety of contextual features in both
components of our system. The plausible role-
filler recognizer uses the following types of fea-
tures for each candidate noun phrase NP;: lexical
head of NP;, semantic class of NP;’s lexical head,
named entity tags associated with NP; and lexico-
syntactic patterns that represent the local context
surrounding NP;. The feature set is automatically
generated from the texts. Each feature is assigned
a binary value for each instance, indicating either
the presence or absence of the feature.

The named-entity features are generated by the
freely available Stanford NER tagger (Finkel et
al., 2005). We use the pre-trained NER model
that comes with the software to identify person,
organization and location names. The syntac-
tic and semantic features are generated by the
Sundance/AutoSlog system (Riloff and Phillips,
2004). We use the Sundance shallow parser to
identify lexical heads, and use its semantic dictio-
naries to assign semantic features to words. The
AutoSlog pattern generator (Riloff, 1996) is used
to create the lexico-syntactic pattern features that
capture local context around each noun phrase.

Our training sets produce a very large number
of features, which initially bogged down our clas-
sifiers. Consequently, we reduced the size of the
feature set by discarding all features that appeared
four times or less in the training set.

Our sentential event recognizer uses the same
contextual features as the plausible role-filler rec-
ognizer, except that features are generated for
every NP in the sentence. In addition, it uses
three types of sentence-level features: sentence
length, bag of words, and verb tense, which are
also binary features. We have two binary sentence
length features indicating that the sentence is long
(greater than 35 words) or is short (shorter than 5
words). Additionally, all of the words in each sen-
tence in the training data are generated as bag of
words features for the sentential model. Finally,
we generate verb tense features from all verbs ap-
pearing in each sentence. Here too we apply a fre-
quency cutoff and eliminate all features that ap-
pear four times or less in the training data.

4 1IE Evaluation
4.1 Data Sets

We evaluated the performance of our IE system on
two data sets: the MUC-4 terrorism corpus (Sund-



heim, 1992), and a ProMed disease outbreaks cor-
pus (Phillips and Riloff, 2007; Patwardhan and
Riloff, 2007). The MUC-4 data set is a standard
IE benchmark collection of news stories about ter-
rorist events. It contains 1700 documents divided
into 1300 development (DEV) texts, and four test
sets of 100 texts each (TST1, TST2, TST3, and
TST4). Unless otherwise stated, our experiments
adopted the same training/test split used in pre-
vious research: the 1300 DEV texts for training,
200 texts (TST1+TST2) for tuning, and 200 texts
(TST3+TST4) as the blind test set. We evaluated
our system on five MUC-4 string roles: perpetra-
tor individuals, perpetrator organizations, physi-
cal targets, victims, and weapons.

The ProMed corpus consists of 120 documents
obtained from ProMed-mail®, a freely accessible
global electronic reporting system for outbreaks
of diseases. These 120 documents are paired with
corresponding answer key templates. Unless oth-
erwise noted, all of our experiments on this data
set used 5-fold cross validation. We extracted two
types of event roles: diseases and victims®.

Unlike some other IE data sets, many of the
texts in these collections do not describe a rele-
vant event. Only about half of the MUC-4 arti-
cles describe a specific terrorist incident*, and only
about 80% of the ProMed articles describe a dis-
ease outbreak. The answer keys for the irrelevant
documents are therefore empty. IE systems are es-
pecially susceptible to false hits when they can be
given texts that contain no relevant events.

The complete IE task involves the creation of
answer key templates, one template per incident
(many documents in our data sets describe multi-
ple events). Our work focuses on accurately ex-
tracting the facts from the text and not on tem-
plate generation per se (e.g., we are not concerned
with coreference resolution or which extraction
belongs in which template). Consequently, our ex-
periments evaluate the accuracy of the extractions
individually. We used head noun scoring, where
an extraction is considered to be correct if its head
noun matches the head noun in the answer key.’

*http://www.promedmail.org

3The “victims” can be people, animals, or plants.

*With respect to the definition of terrorist incidents in the
MUC-4 guidelines (Sundheim, 1992).

3Pronouns were discarded from both the system responses
and the answer keys since we do not perform coreference res-
olution. Duplicate extractions (e.g., the same string extracted
multiple times from the same document) were conflated be-
fore being scored, so they count as just one hit or one miss.

4.2 Baselines

We generated three baselines to use as compar-
isons with our IE system. As our first baseline,
we used AutoSlog-TS (Riloff, 1996), which is a
weakly-supervised, pattern-based IE system avail-
able as part of the Sundance/AutoSlog software
package (Riloff and Phillips, 2004). Our previous
work in event-based IE (Patwardhan and Riloff,
2007) also used a pattern-based approach that ap-
plied semantic affinity patterns to relevant regions
in text. We use this system as our second base-
line. As a third baseline, we trained a Naive Bayes
IE classifier that is analogous to the plausible role-
filler recognizer in our unified IE model, except
that this baseline system is not conditioned on the
assumption of having an event sentence. Conse-
quently, this baseline NB classifier is akin to a tra-
ditional supervised learning-based IE system that
uses only local contextual features to make extrac-
tion decisions. Formally, the baseline NB classi-
fier uses the formula:

P(PlausFillr(NP;)|F) =
1
EP(Plaust'llr(NPz'))

« [ P(f:|PlausFillr(NP;))
fieF

where F is the set of local features,
P(PlausFillr(NP;)) is the prior probability,
and Z is the normalizing constant. We used the
Weka (Witten and Frank, 2005) implementation
of Naive Bayes for this baseline NB system.

New Jersey, February, 26. An outbreak of Ebola has

been confirmed in Mercer County, New Jersey. Five teenage
boys appear to have contracted the deadly virus from an
unknown source. The CDC is investigating the cases and is
taking measures to prevent the spread. ..

Disease: Ebola
Victims: Five teenage boys
Location: Mercer County, New Jersey

Date: | February 26

Figure 1: A Disease Outbreak Event Template

Both the MUC-4 and ProMed data sets have
separate answer keys rather than annotated source
documents. Figure 1 shows an example of a doc-
ument and its corresponding answer key template.
To train the baseline NB system, we identify all
instances of each answer key string in the source
document and consider every instance a positive
training example. This produces noisy training
data, however, because some instances occur in



PerpInd

PerpOrg
P R F P R F

Target Victim Weapon
P R F P R F P R F

AutoSlog-TS | .33 | 49 | 40 || .52 | .33 | 41
Sem Affinity | 48 | .39 | 43 || .36 | .58 | 45

541 .59 | 56 || 49 | 54| 51 38 | 44 | 41
56 | 46 | 50 || 46 | 44 | 45 53 | .46 | .50

NB .50 36 | 34 | 35 || 35| 46 | 40
NB .70 41 | 25 | 31 || 43 | 31 | 36
NB .90 S1 |17 | 25 ] 56 | 15 | 24

53| .49 | 51 || .50 | .50 | .50
S8 | 42| 48 || 58 | 37 | 45 || 1.00 | .04 | .07
.67 | 30 | 41 || .75 | .23 | .36 || 1.00 | .02 | .04

100 | 05 | .10

Table 1: Baseline Results on MUC-4

Disease Victim
P R F P R F
AutoSlog-TS | .33 | .60 | 43 || .36 | .49 | 41
Sem Affinity | .31 | 49 | .38 || 41 | 47 | 44

NB .50 201 .73 | 31 ] .29 | 56 | .39
NB .70 23| 67 | 34 || 37| 52| 44
NB .90 341 .59 | 43 || 47 | 39 | 43

Table 2: Baseline Results on ProMed

undesirable contexts. For example, if the string
“man” appears in an answer key as a victim, one
instance of “man” may refer to the actual vic-
tim in an event sentence, while another instance
of “man” may occur in a non-event context (e.g.,
background information) or may refer to a com-
pletely different person.

We report three evaluation metrics in our exper-
iments: precision (P), recall (R), and F-score (F),
where recall and precision are equally weighted.
For the Naive Bayes classifier, the natural thresh-
old for distinguishing between positive and nega-
tive classes is 0.5, but we also evaluated this clas-
sifier with thresholds of 0.7 and 0.9 to see if we
could effect a recall/precision trade-off. Tables 1
and 2 present the results of our three baseline sys-
tems. The NB classifier performs comparably to
AutoSlog-TS and Semantic Affinity on most event
roles, although a threshold of 0.90 is needed to
reach comparable performance on ProMed. The
relatively low numbers across the board indicate
that these corpora are challenging, but these re-
sults suggest that our plausible role-filler recog-
nizer is competitive with other existing IE sys-
tems. In Section 4.4 we will show how our unified
IE model compares to these baselines. But before
that (in the next section) we evaluate the quality of
the second component of our IE system: the sen-
tential event recognizer.

4.3 Sentential Event Recognizer Models

The sentential event recognizer is one of the core
contributions of this research, so in this section we
evaluate it by itself, before we employ it within the
unified framework. The purpose of the sentential

event recognizer is to determine whether a sen-
tence is discussing a domain-relevant event. For
our data sets, the classifier must decide whether a
sentence is discussing a terrorist incident (MUC-
4) or a disease outbreak (ProMed). Ideally, we
want such a classifier to operate independently
from the answer keys and the extraction task per
se. For example, a terrorism IE system could be
designed to extract only perpetrators and victims
of terrorist events, or it could be designed to ex-
tract only targets and locations. The job of the sen-
tential event recognizer remains the same: to iden-
tify sentences that discuss a terrorist event. How to
train and evaluate such a system is a difficult ques-
tion. In this section, we present two approaches
that we explored to generate the training data: (a)
using the IE answer keys, and (b) using human
judgements.

4.3.1 Sentence Annotation via Answer Keys

We have argued that the event relevance of a sen-
tence should not be tied to a specific set of event
roles. However, the IE answer keys can be used
to identify some sentences that describe an event,
because they contain an answer string. So we can
map the answer strings back to sentences in the
source documents to automatically generate event
sentence annotations.® These annotations will be
noisy, though, because an answer string can appear
in a non-event sentence, and some event sentences
may not contain any answer strings. The alterna-
tive, however, is sentence annotations by humans,
which (as we will discuss in Section 4.3.2) is chal-
lenging.

4.3.2 Sentence Annotation via Human
Judgements

For many sentences there is a clear consensus
among people that an event is being discussed. For
example, most readers would agree that sentence
(1) below is describing a terrorist event, while sen-

SA similar strategy was used in previous work (Patward-
han and Riloff, 2007) to generate a test set for the evaluation
of a relevant region classifier.



Evaluation on Answer Keys Evaluation on Human Annotations
Event Non-Event Event Non-Event
Acc | Pr  Rec F Pr Rec F Acc | Pr  Rec F Pr Rec F
MUC-4 (Terrorism)
2| NB 80 | 57 55 56| .86 87 .87 8l | 46 60 52| 91 8 .88
< | SVM 80 | .68 42 52| .84 93 88 83 |55 44 49 8 91 .90
§ NB 82 | .64 48 55| .85 92 .88 85 | 56 57 57191 91 091
T | SVM 79 | 64 41 50| .83 91 .87 84 | 62 51 56| .90 91 91
ProMed (Disease Outbreaks)
< NB g5 | .62 .61 .61 | 81 82 .82 72 | 43 58 50 86 .77 .81
< | SVM 74 | 78 31 44| 74 95 .83 76 | 51 26 35 .80 92 .86
§ NB 73 1 .61 46 52| .77 .86 .81 79 | 56 57T 56| .87 .86 .86
T | SVM J0 | 62 32 42| 73 .89 .81 g9 | 62 42 50| .84 90 .87
Table 3: Sentential Event Recognizers Results (5-fold Cross-Validation)
E"“l"atilg”ez’: Human A";%’I‘:’;gnzm and 0.77 Cohen’s x on the MUC-4 data. Given
Vv -Ev . . .
Acc | Pr Rec F | Pr Rec F the difficulty of this task, we were satisfied that
NB 83 .50 70 581 .94 8 .90 this task is reasonably well-defined and the anno-
SVM | 89 | 83 39 53| .89 98 .94 tations are of gOOd quality.

Table 4: Sentential Event Recognizer Results for
MUC-4 using 1300 Documents for Training

tence (2) is not. However it is difficult to draw a
clear line. Sentence (3), for example, describes an
action taken in response to a terrorist event. Is this
a terrorist event sentence? Precisely how to define
an event sentence is not obvious.

(1) Al Qaeda operatives launched an at-
tack on the Madrid subway system.

(2) Madrid has a population of about
3.2 million people.

(3) City officials stepped up security in
response to the attacks.

We tackled this issue by creating detailed an-
notation guidelines to define the notion of an
event sentence, and conducting a human annota-
tion study. The guidelines delineated a general
time frame for the beginning and end of an event,
and constrained the task to focus on specific inci-
dents that were reported in the IE answer key. We
gave the annotators a brief description (e.g., mur-
der in Peru) of each event that had a filled answer
key in the data set. They only labeled sentences
that discussed those particular events.

We employed two human judges, who anno-
tated 120 documents from the ProMed test set,
and 100 documents from the MUC-4 test set. We
asked both judges to label 30 of the same docu-
ments from each data set so that we could compute
inter-annotator agreement. The annotators had an
agreement of 0.72 Cohen’s « on the ProMed data,

4.3.3 Event Recognizer Results

We evaluated the two sentential event recognizer
models described in Section 3.2 in two ways:
(1) using the answer key sentence annotations for
training/testing, and (2) using the human annota-
tions for training/testing. Table 3 shows the re-
sults for all combinations of training/testing data.
Since we only have human annotations for 100
MUC-4 texts and 120 ProMed texts, we performed
5-fold cross-validation on these documents. For
our classifiers, we used the Weka (Witten and
Frank, 2005) implementation of Naive Bayes and
the SVMLight (Joachims, 1998) implementation
of the SVM. For each classifier we report overall
accuracy, and precision, recall and F-scores with
respect to both the positive and negative classes
(event vs. non-event sentences).

The rows labeled Ans show the results for mod-
els trained via answer keys, and the rows labeled
Hum show the results for the models trained with
human annotations. The left side of the table
shows the results using the answer key annotations
for evaluation, and the right side of the table shows
the results using the human annotations for evalua-
tion. One expects classifiers to perform best when
they are trained and tested on the same type of
data, and our results bear this out — the classifiers
that were trained and tested on the same kind of
annotations do best. The boldfaced numbers rep-
resent the best accuracies achieved for each do-
main. As we would expect, the classifiers that are
both trained and tested with human annotations
(Hum) show the best performance, with the Naive
Bayes achieving the best accuracy of 85% on the



PerpInd PerpOrg Target Victim Weapon
P R F P R F P R F P R F P R F
AutoSlog-TS 33149 | 40 | 52 | 33 | 41 || 54 ] 59 ] .56 || 49 | 54| 51 38 | 44| 41
Sem Affinity A8 | 39 | 43 || 36 | 58 | 45 || 56 | 46 | 50 || 46 | 44 | 45 53 | .46 | .50
NB (baseline) 36| 34| 35 35| .46 | 40| 53 | 49 | .51 || .50 | .50 | .50 || 1.00 | .05 | .10

GLACIER
NB/NB 90 | 39 | 59 | 47 || 33 | .51 | 40
NB/SVM 40 | 51 | 58 | .54 || .34 | 45 | .38
NB/SVM .50 | .66 | 47 | 55 || 41 | 26 | .32

39 1 .72 | 51| 52| 54 | 53 A7 | 55| 51
42 1 .72 | 53 ]| 55 | .58 | .56 57 | 53| .55
S50 .62 | 55 || .62 | 36 | 45 .64 | 43 | 52

Table 5: Unified IE Model on MUC-4

MUC-4 texts, and the SVM achieving the best ac-
curacy of 79% on the ProMed texts.

The recall and precision for non-event sentences
is much higher than for event sentences. This clas-
sifier is forced to draw a hard line between the
event and non-event sentences, which is a difficult
task even for people. One of the advantages of our
unified IE model, which will be described in the
next section, is that it does not require hard deci-
sions but instead uses a probabilistic estimate of
how “event-ish” a sentence is.

Table 3 showed that models trained on human
annotations outperform models trained on answer
key annotations. But with the MUC-4 data, we
have the luxury of 1300 training documents with
answer keys, while we only have 100 documents
with human annotations. Even though the answer
key annotations are noisier, we have 13 times as
much training data.

So we trained another sentential event recog-
nizer using the entire MUC-4 training set. These
results are shown in Table 4. Observe that using
this larger (albeit noisy) training data does not ap-
pear to affect the Naive Bayes model very much.
Compared with the model trained on 100 manu-
ally annotated documents, its accuracy decreases
by 2% from 85% to 83%. The SVM model, on
the other hand, achieves an 89% accuracy when
trained with the larger MUC-4 training data, com-
pared to 84% accuracy for the model trained from
the 100 manually labeled documents. Conse-
quently, the sentential event recognizer models
used in our unified IE framework (described in
Section 4.4) are trained with this 1300 document
training set.

4.4 Evaluation of the Unified IE Model

We now evaluate the performance of our unified IE
model, GLACIER, which allows a plausible role-
filler recognizer and a sentential event recognizer
to make joint decisions about phrase extractions.
Tables 5 and 6 present the results of the unified

Disease Victim
P R F P R F
AutoSlog-TS 33 1.60 | 43 || 36 | 49 | 41
Sem Affinity 31| .49 | 38 || 41 | 47 | 44

NB (baseline) 34| 59 | 43 || 47 | 39 | 43
GLACIER
NB/NB .90 | 41 | .61 | .49 || 38 | .52 | .44
NB/SVM .40 | 31 | .66 | 42 || .32 | .55 | 41
NB/SVM .50 | 38 | 54 | 44 || 42 | 47 | 44

Table 6: Unified IE Model on ProMed

IE model on the MUC-4 and ProMed data sets.
The NB/NB systems use Naive Bayes models for
both components, while the NB/SVM systems use
a Naive Bayes model for the plausible role-filler
recognizer and an SVM for the sentential event
recognizer. As with our baseline system, we ob-
tain good results using a threshold of 0.90 for our
NB/NB model (i.e., only NPs with probability >
0.90 are extracted). For our NB/SVM models, we
evaluated using the default threshold (0.50) but ob-
served that recall was sometimes low. So we also
use a threshold of 0.40, which produces superior
results. Here too, we used the Weka (Witten and
Frank, 2005) implementation of the Naive Bayes
model and the SVMLight (Joachims, 1998) imple-
mentation of the SVM.

For the MUC-4 data, our unified IE model us-
ing the SVM (0.40) outperforms all 3 baselines
on three roles (PerpInd, Victim, Weapon) and
outperforms 2 of the 3 baselines on the Target
role. When GLACIER outperforms the other sys-
tems it is often by a wide margin: the F-score
for PerpInd jumped from 0.43 for the best base-
line (Sem Affinity) to 0.54 for GLACIER, and the
F-scores for Victim and Weapon each improved
by 5% over the best baseline. These gains came
from both increased recall and increased precision,
demonstrating that GLACIER extracts some infor-
mation that was missed by the other systems and
is also less prone to false hits.

Only the PerpOrg role shows inferior per-
formance. Organizations perpetrating a terrorist



event are often discussed later in a document, far
removed from the main event description. For ex-
ample, a statement that A/ Qaeda is believed to
be responsible for an attack would typically ap-
pear after the event description. As a result, the
sentential event recognizer tends to generate low
probabilities for such sentences. We believe that
addressing this issue would require the use of dis-
course relations or the use of even larger context
sizes. We intend to explore these avenues of re-
search in future work.

On the ProMed data, GLACIER produces results
that are similar to the baselines for the Victim role,
but it outperforms the baselines for the Disease
role. We find that for this domain, the unified IE
model with the Naive Bayes sentential event rec-
ognizer is superior to the unified IE model with
the SVM classifier. For the Disease role, the F-
score jumped 6%, from 0.43 for the best base-
line systems (AutoSlog-TS and the NB baseline)
to 0.49 for GLACIERNB/NB- In contrast to the
MUC-4 data, this improvement was mostly due
to an increase in precision (up to 0.41), indicating
that our unified IE model was effective at elimi-
nating many false hits. For the Victim role, the
performance of the unified model is comparable
to the baselines. On this event role, the F-score
of GLACIERNg,NB (0.44) matches that of the best
baseline system (Sem Affinity, with 0.44). How-
ever, note that GLACIERNg /N Can achieve a 5%
gain in recall over this baseline, at the cost of a 3%
precision loss.

4.5 Specific Examples

Figure 2 presents some specific examples of ex-
tractions that are failed to be extracted by the
baseline models, but are correctly identified by
GLACIER because of its use of sentential evidence.
Observe that in each of these examples, GLACIER
correctly extracts the underlined phrases, in spite
of the inconclusive evidence in the local contexts
around them. In the last sentence in Figure 2, for
example, GLACIER correctly makes the inference
that the policemen in the bus (which was traveling
on the bridge) are likely the victims of the terrorist
event. Thus, we see that our system manages to
balance the influence of the two probability com-
ponents to make extraction decisions that would
be impossible to make by relying only on the local
phrasal context. In addition, the sentential event
recognizer can also help improve precision by pre-

THE MNR REPORTED ON 12 JANUARY THAT HEAVILY
ARMED MEN IN CIVILIAN CLOTHES HAD INTERCEPTED
A VEHICLE WITH OQUELI AND FLORES ENROUTE FOR
LA AURORA AIRPORT AND THAT THE TWO POLITICAL
LEADERS HAD BEEN KIDNAPPED AND WERE REPORTED
MISSING.

PerpInd: HEAVILY ARMED MEN

THE SCANT POLICE INFORMATION SAID THAT THE
DEVICES WERE APPARENTLY LEFT IN FRONT OF THE TWO
BANK BRANCHES MINUTES BEFORE THE CURFEW BEGAN
FOR THE 6TH CONSECUTIVE DAY - PRECISELY TO
COUNTER THE WAVE OF TERRORISM CAUSED BY DRUG
TRAFFICKERS.

Weapon: THE DEVICES

THOSE WOUNDED INCLUDE THREE EMPLOYEES OF THE
GAS STATION WHERE THE CAR BOMB WENT OFF AND
TWO PEOPLE WHO WERE WALKING BY THE GAS STATION
AT THE MOMENT OF THE EXPLOSION.

Victim: THREE EMPLOYEES OF THE GAS STATION
Victim: TWO PEOPLE

MEMBERS OF THE BOMB SQUAD HAVE DEACTIVATED

A POWERFUL BOMB PLANTED AT THE ANDRES AVELINO
CACERES PARK, WHERE PRESIDENT ALAN GARCIA WAS
DUE TO PARTICIPATE IN THE COMMEMORATION OF THE
BATTLE OF TARAPACA.

Victim: PRESIDENT ALAN GARCIA

EPL [POPULAR LIBERATION ARMY] GUERRILLAS BLEW
UP A BRIDGE AS A PUBLIC BUS, IN WHICH SEVERAL
POLICEMEN WERE TRAVELING, WAS CROSSING IT.

Victim: SEVERAL POLICEMEN

Figure 2: Examples of GLACIER Extractions

venting extractions from non-event sentences.

5 Conclusions

We presented a unified model for IE that balances
the influence of sentential context with local con-
textual evidence to improve the performance of
event-based IE. Our experimental results showed
that using sentential contexts indeed produced bet-
ter results on two IE data sets. Our current model
uses supervised learning, so one direction for fu-
ture work is to adapt the model for weakly super-
vised learning. We also plan to incorporate dis-
course features and investigate even wider con-
texts to capture broader discourse effects.
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