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Abstract

Information Extraction (IE) systems that

extract role fillers for events typically look

at the local context surrounding a phrase

when deciding whether to extract it. Of-

ten, however, role fillers occur in clauses

that are not directly linked to an event

word. We present a new model for event

extraction that jointly considers both the

local context around a phrase along with

the wider sentential context in a proba-

bilistic framework. Our approach uses a

sentential event recognizer and a plausible

role-filler recognizer that is conditioned on

event sentences. We evaluate our system

on two IE data sets and show that our

model performs well in comparison to ex-

isting IE systems that rely on local phrasal

context.

1 Introduction

Information Extraction (IE) systems typically use

extraction patterns (e.g., Soderland et al. (1995),

Riloff (1996), Yangarber et al. (2000), Califf

and Mooney (2003)) or classifiers (e.g., Freitag

(1998), Freitag and McCallum (2000), Chieu et al.

(2003), Bunescu and Mooney (2004)) to extract

role fillers for events. Most IE systems consider

only the immediate context surrounding a phrase

when deciding whether to extract it. For tasks such

as named entity recognition, immediate context is

usually sufficient. But for more complex tasks,

such as event extraction, a larger field of view is

often needed to understand how facts tie together.

Most IE systems are designed to identify role

fillers that appear as arguments to event verbs

or nouns, either explicitly via syntactic relations

or implicitly via proximity (e.g., John murdered

Tom or the murder of Tom by John). But many

facts are presented in clauses that do not contain

event words, requiring discourse relations or deep

structural analysis to associate the facts with event

roles. For example, consider the sentences below:

Seven people have died

. . . and 30 were injured in India after terror-

ists launched an attack on the Taj Hotel.

. . . in Mexico City and its surrounding sub-

urbs in a Swine Flu outbreak.

. . . after a tractor-trailer collided with a bus

in Arkansas.

Two bridges were destroyed

. . . in Baghdad last night in a resurgence of

bomb attacks in the capital city.

. . . and $50 million in damage was caused by

a hurricane that hit Miami on Friday.

. . . to make way for modern, safer bridges

that will be constructed early next year.

These examples illustrate a common phenomenon

in text where information is not explicitly stated

as filling an event role, but readers have no trou-

ble making this inference. The role fillers above

(seven people, two bridges) occur as arguments to

verbs that reveal state information (death, destruc-

tion) but are not event-specific (i.e., death and de-

struction can result from a wide variety of incident

types). IE systems often fail to extract these role

fillers because these systems do not recognize the

immediate context as being relevant to the specific

type of event that they are looking for.

We propose a new model for information ex-

traction that incorporates both phrasal and senten-

tial evidence in a unified framework. Our uni-

fied probabilistic model, called GLACIER, consists

of two components: a model for sentential event

recognition and a model for recognizing plausi-

ble role fillers. The Sentential Event Recognizer

offers a probabilistic assessment of whether a sen-

tence is discussing a domain-relevant event. The
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Plausible Role-Filler Recognizer is then condi-

tioned to identify phrases as role fillers based upon

the assumption that the surrounding context is dis-

cussing a relevant event. This unified probabilistic

model allows the two components to jointly make

decisions based upon both the local evidence sur-

rounding each phrase and the “peripheral vision”

afforded by the sentential event recognizer.

This paper is organized as follows. Section

2 positions our research with respect to related

work. Section 3 presents our unified probabilistic

model for information extraction. Section 4 shows

experimental results on two IE data sets, and Sec-

tion 5 discusses directions for future work.

2 Related Work

Many event extraction systems rely heavily on the

local context around words or phrases that are can-

didates for extraction. Some systems use extrac-

tion patterns (Soderland et al., 1995; Riloff, 1996;

Yangarber et al., 2000; Califf and Mooney, 2003),

which represent the immediate contexts surround-

ing candidate extractions. Similarly, classifier-

based approaches (Freitag, 1998; Freitag and Mc-

Callum, 2000; Chieu et al., 2003; Bunescu and

Mooney, 2004) rely on features in the immedi-

ate context of the candidate extractions. Our work

seeks to incorporate additional context into IE.

Indeed, several recent approaches have shown

the need for global information to improve IE per-

formance. Maslennikov and Chua (2007) use dis-

course trees and local syntactic dependencies in

a pattern-based framework to incorporate wider

context. Finkel et al. (2005) and Ji and Grish-

man (2008) incorporate global information by en-

forcing event role or label consistency over a doc-

ument or across related documents. In contrast,

our approach simply creates a richer IE model for

individual extractions by expanding the “field of

view” to include the surrounding sentence.

The two components of the unified model pre-

sented in this paper are somewhat similar to our

previous work (Patwardhan and Riloff, 2007),

where we employ a relevant region identification

phase prior to pattern-based extraction. In that

work we adopted a pipeline paradigm, where a

classifier identifies relevant sentences and only

those sentences are fed to the extraction module.

Our unified probabilistic model described in this

paper does not draw a hard line between rele-

vant and irrelevant sentences, but gently balances

the influence of both local and sentential contexts

through probability estimates.

3 A Unified IE Model that Combines

Phrasal and Sentential Evidence

We introduce a probabilistic model for event-

based IE that balances the influence of two kinds

of contextual information. Our goal is to create

a model that has the flexibility to make extraction

decisions based upon strong evidence from the lo-

cal context, or strong evidence from the wider con-

text coupled with a more general local context. For

example, some phrases explicitly refer to an event,

so they almost certainly warrant extraction regard-

less of the wider context (e.g., terrorists launched

an attack).1 In contrast, some phrases are poten-

tially relevant but too general to warrant extrac-

tion on their own (e.g., people died could be the

result of different incident types). If we are confi-

dent that the sentence discusses an event of inter-

est, however, then such phrases could be reliably

extracted.

Our unified model for IE (GLACIER) combines

two types of contextual information by incorpo-

rating it into a probabilistic framework. To deter-

mine whether a noun phrase instance NPi should

be extracted as a filler for an event role, GLACIER

computes the joint probability that NPi :

(1) appears in an event sentence, and

(2) is a legitimate filler for the event role.

Thus, GLACIER is designed for noun phrase ex-

traction and, mathematically, its decisions are

based on the following joint probability:

P (EvSent(SNPi
),PlausFillr(NPi))

where SNPi
is the sentence containing noun phrase

NPi . This probability estimate is based on con-

textual features F appearing within SNPi
and in

the local context of NPi . Including F in the joint

probability, and applying the product rule, we can

split our probability into two components:

P (EvSent(SNPi
),PlausFillr(NPi)|F ) =

P (EvSent(SNPi
)|F )

∗ P (PlausFillr(NPi)|EvSent(SNPi
), F )

These two probability components, in the expres-

sion above, form the basis of the two modules in

1There are always exceptions of course, such as hypothet-
ical statements, but they are relatively uncommon.



our IE system – the sentential event recognizer and

the plausible role-filler recognizer. In arriving at

a decision to extract a noun phrase, our unified

model for IE uses these modules to estimate the

two probabilities based on the set of contextual

features F . Note that having these two probability

components allows the system to gently balance

the influence from the sentential and phrasal con-

texts, without having to make hard decisions about

sentence relevance or phrases in isolation.

In this system, the sentential event recog-

nizer is embodied in the probability compo-

nent P (EvSent(SNPi
)|F ). This is essentially

the probability of a sentence describing a rel-

evant event. Similarly, the plausible role-

filler recognizer is embodied by the probabil-

ity P (PlausFillr(NPi)|EvSent(SNPi
), F ). This

component, therefore, estimates the probability

that a noun phrase fills a specific event role, as-

suming that the noun phrase occurs in an event

sentence. Many different techniques could be used

to produce these probability estimates. In the rest

of this section, we present the specific models that

we used for each of these components.

3.1 Plausible Role-Filler Recognizer

The plausible role-filler recognizer is similar to

most traditional IE systems, where the goal is to

determine whether a noun phrase can be a legiti-

mate filler for a specific type of event role based on

its local context. Pattern-based approaches match

the context surrounding a phrase using lexico-

syntactic patterns or rules. However, most of these

approaches do not produce probability estimates

for the extractions. Classifier-based approaches

use machine learning classifiers to make extrac-

tion decisions, based on features associated with

the local context. Any classifier that can generate

probability estimates, or similar confidence val-

ues, could be plugged into our model.

In our work, we use a Naı̈ve Bayes classifier as

our plausible role-filler recognizer. The probabili-

ties are computed using a generative Naı̈ve Bayes

framework, based on local contextual features sur-

rounding a noun phrase. These clues include lexi-

cal matches, semantic features, and syntactic rela-

tions, and will be described in more detail in Sec-

tion 3.3. The Naı̈ve Bayes (NB) plausible role-

filler recognizer is defined as follows:

P (PlausFillr(NPi)|EvSent(SNPi
), F ) =

1

Z
P (PlausFillr(NPi )|EvSent(SNPi

)) ∗
∏

fi∈F

P (fi|PlausFillr(NPi),EvSent(SNPi
))

where F is the set of local contextual features

and Z is the normalizing constant. The prior

P (PlausFillr(NPi)|EvSent(SNPi
)) is estimated

from the fraction of role fillers in the training data.

The product term in the equation is the likelihood,

which makes the simplifying assumption that all

of the features in F are independent of one an-

other. It is important to note that these probabil-

ities are conditioned on the noun phrase NPi ap-

pearing in an event sentence.

Most IE systems need to extract several differ-

ent types of role fillers for each event. For in-

stance, to extract information about terrorist inci-

dents a system may extract the names of perpetra-

tors, victims, targets, and weapons. We create a

separate IE model for each type of event role. To

construct a unified IE model for an event role, we

must specifically create a plausible role-filler rec-

ognizer for that event role, but we can use a single

sentential event recognizer for all of the role filler

types.

3.2 Sentential Event Recognizer

The task at hand for the sentential event recognizer

is to analyze features in a sentence and estimate

the probability that the sentence is discussing a

relevant event. This is very similar to the task per-

formed by text classification systems, with some

minor differences. Firstly, we are dealing with

the classification of sentences, as opposed to en-

tire documents. Secondly, we need to generate a

probability estimate of the “class”, and not just

a class label. Like the plausible role-filler recog-

nizer, here too we employ machine learning clas-

sifiers to estimate the desired probabilities.

3.2.1 Naı̈ve Bayes Event Recognizer

Since Naı̈ve Bayes classifiers estimate class prob-

abilities, we employ such a classifier to create a

sentential event recognizer:

P (EvSent(SNPi
)|F ) =

1

Z
P (EvSent(SNPi

))

∗
∏

fi∈F

P (fi|EvSent(SNPi
))

where Z is the normalizing constant and F is the

set of contextual features in the sentence. The



prior P (EvSentS(NPi )) is obtained from the ra-

tio of event and non-event sentences in the train-

ing data. The product term in the equation is the

likelihood, which makes the simplifying assump-

tion that the features in F are independent of one

another. The features used by the model will be

described in Section 3.3.

A known issue with Naı̈ve Bayes classifiers is

that, even though their classification accuracy is

often quite reasonable, their probability estimates

are often poor (Domingos and Pazzani, 1996;

Zadrozny and Elkan, 2001; Manning et al., 2008).

The problem is that these classifiers tend to overes-

timate the probability of the predicted class, result-

ing in a situation where most probability estimates

from the classifier tend to be either extremely close

to 0.0 or extremely close to 1.0. We observed this

problem in our classifier too, so we decided to ex-

plore an additional model to estimate probabilities

for the sentential event recognizer. This second

model, based on SVMs, is described next.

3.2.2 SVM Event Recognizer

Given the all-or-nothing nature of the probability

estimates that we observed from the Naı̈ve Bayes

model, we decided to try using a Support Vector

Machine (SVM) (Vapnik, 1995; Joachims, 1998)

classifier as an alternative to Naı̈ve Bayes. One

of the issues with doing this is that SVMs are not

probabilistic classifiers. SVMsmake classification

decisions using on a decision boundary defined by

support vectors identified during training. A deci-

sion function is applied to unseen test examples

to determine which side of the decision bound-

ary those examples lie. While the values obtained

from the decision function only indicate class as-

signments for the examples, we used these val-

ues to produce confidence scores for our sentential

event recognizer.

To produce a confidence score from the SVM

classifier, we take the values generated by the deci-

sion function for each test instance and normalize

them based on the minimum and maximum values

produced across all of the test instances. This nor-

malization process produces values between 0 and

1 that we use as a rough indicator of the confidence

in the SVM’s classification. We observed that we

could effect a consistent recall/precision trade-off

by using these values as thresholds for classifica-

tion decisions, which suggests that this approach

worked reasonably well for our task.

3.3 Contextual Features

We used a variety of contextual features in both

components of our system. The plausible role-

filler recognizer uses the following types of fea-

tures for each candidate noun phrase NPi : lexical

head ofNPi , semantic class ofNPi ’s lexical head,

named entity tags associated with NPi and lexico-

syntactic patterns that represent the local context

surrounding NPi . The feature set is automatically

generated from the texts. Each feature is assigned

a binary value for each instance, indicating either

the presence or absence of the feature.

The named-entity features are generated by the

freely available Stanford NER tagger (Finkel et

al., 2005). We use the pre-trained NER model

that comes with the software to identify person,

organization and location names. The syntac-

tic and semantic features are generated by the

Sundance/AutoSlog system (Riloff and Phillips,

2004). We use the Sundance shallow parser to

identify lexical heads, and use its semantic dictio-

naries to assign semantic features to words. The

AutoSlog pattern generator (Riloff, 1996) is used

to create the lexico-syntactic pattern features that

capture local context around each noun phrase.

Our training sets produce a very large number

of features, which initially bogged down our clas-

sifiers. Consequently, we reduced the size of the

feature set by discarding all features that appeared

four times or less in the training set.

Our sentential event recognizer uses the same

contextual features as the plausible role-filler rec-

ognizer, except that features are generated for

every NP in the sentence. In addition, it uses

three types of sentence-level features: sentence

length, bag of words, and verb tense, which are

also binary features. We have two binary sentence

length features indicating that the sentence is long

(greater than 35 words) or is short (shorter than 5

words). Additionally, all of the words in each sen-

tence in the training data are generated as bag of

words features for the sentential model. Finally,

we generate verb tense features from all verbs ap-

pearing in each sentence. Here too we apply a fre-

quency cutoff and eliminate all features that ap-

pear four times or less in the training data.

4 IE Evaluation

4.1 Data Sets

We evaluated the performance of our IE system on

two data sets: the MUC-4 terrorism corpus (Sund-



heim, 1992), and a ProMed disease outbreaks cor-

pus (Phillips and Riloff, 2007; Patwardhan and

Riloff, 2007). The MUC-4 data set is a standard

IE benchmark collection of news stories about ter-

rorist events. It contains 1700 documents divided

into 1300 development (DEV) texts, and four test

sets of 100 texts each (TST1, TST2, TST3, and

TST4). Unless otherwise stated, our experiments

adopted the same training/test split used in pre-

vious research: the 1300 DEV texts for training,

200 texts (TST1+TST2) for tuning, and 200 texts

(TST3+TST4) as the blind test set. We evaluated

our system on five MUC-4 string roles: perpetra-

tor individuals, perpetrator organizations, physi-

cal targets, victims, and weapons.

The ProMed corpus consists of 120 documents

obtained from ProMed-mail2, a freely accessible

global electronic reporting system for outbreaks

of diseases. These 120 documents are paired with

corresponding answer key templates. Unless oth-

erwise noted, all of our experiments on this data

set used 5-fold cross validation. We extracted two

types of event roles: diseases and victims3.

Unlike some other IE data sets, many of the

texts in these collections do not describe a rele-

vant event. Only about half of the MUC-4 arti-

cles describe a specific terrorist incident4, and only

about 80% of the ProMed articles describe a dis-

ease outbreak. The answer keys for the irrelevant

documents are therefore empty. IE systems are es-

pecially susceptible to false hits when they can be

given texts that contain no relevant events.

The complete IE task involves the creation of

answer key templates, one template per incident

(many documents in our data sets describe multi-

ple events). Our work focuses on accurately ex-

tracting the facts from the text and not on tem-

plate generation per se (e.g., we are not concerned

with coreference resolution or which extraction

belongs in which template). Consequently, our ex-

periments evaluate the accuracy of the extractions

individually. We used head noun scoring, where

an extraction is considered to be correct if its head

noun matches the head noun in the answer key.5

2http://www.promedmail.org
3The “victims” can be people, animals, or plants.
4With respect to the definition of terrorist incidents in the

MUC-4 guidelines (Sundheim, 1992).
5Pronouns were discarded from both the system responses

and the answer keys since we do not perform coreference res-
olution. Duplicate extractions (e.g., the same string extracted
multiple times from the same document) were conflated be-
fore being scored, so they count as just one hit or one miss.

4.2 Baselines

We generated three baselines to use as compar-

isons with our IE system. As our first baseline,

we used AutoSlog-TS (Riloff, 1996), which is a

weakly-supervised, pattern-based IE system avail-

able as part of the Sundance/AutoSlog software

package (Riloff and Phillips, 2004). Our previous

work in event-based IE (Patwardhan and Riloff,

2007) also used a pattern-based approach that ap-

plied semantic affinity patterns to relevant regions

in text. We use this system as our second base-

line. As a third baseline, we trained a Naı̈ve Bayes

IE classifier that is analogous to the plausible role-

filler recognizer in our unified IE model, except

that this baseline system is not conditioned on the

assumption of having an event sentence. Conse-

quently, this baseline NB classifier is akin to a tra-

ditional supervised learning-based IE system that

uses only local contextual features to make extrac-

tion decisions. Formally, the baseline NB classi-

fier uses the formula:

P (PlausFillr(NPi)|F ) =

1

Z
P (PlausFillr(NPi))

∗
∏

fi∈F

P (fi|PlausFillr(NPi))

where F is the set of local features,

P (PlausFillr(NPi)) is the prior probability,

and Z is the normalizing constant. We used the

Weka (Witten and Frank, 2005) implementation

of Naı̈ve Bayes for this baseline NB system.

New Jersey, February, 26. An outbreak of Ebola has
been confirmed in Mercer County, New Jersey. Five teenage
boys appear to have contracted the deadly virus from an
unknown source. The CDC is investigating the cases and is
taking measures to prevent the spread. . .

Disease: Ebola
Victims: Five teenage boys

Location: Mercer County, New Jersey
Date: February 26

Figure 1: A Disease Outbreak Event Template

Both the MUC-4 and ProMed data sets have

separate answer keys rather than annotated source

documents. Figure 1 shows an example of a doc-

ument and its corresponding answer key template.

To train the baseline NB system, we identify all

instances of each answer key string in the source

document and consider every instance a positive

training example. This produces noisy training

data, however, because some instances occur in



PerpInd PerpOrg Target Victim Weapon
P R F P R F P R F P R F P R F

AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .49 .54 .51 .38 .44 .41
Sem Affinity .48 .39 .43 .36 .58 .45 .56 .46 .50 .46 .44 .45 .53 .46 .50
NB .50 .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
NB .70 .41 .25 .31 .43 .31 .36 .58 .42 .48 .58 .37 .45 1.00 .04 .07
NB .90 .51 .17 .25 .56 .15 .24 .67 .30 .41 .75 .23 .36 1.00 .02 .04

Table 1: Baseline Results on MUC-4

Disease Victim
P R F P R F

AutoSlog-TS .33 .60 .43 .36 .49 .41
Sem Affinity .31 .49 .38 .41 .47 .44
NB .50 .20 .73 .31 .29 .56 .39
NB .70 .23 .67 .34 .37 .52 .44
NB .90 .34 .59 .43 .47 .39 .43

Table 2: Baseline Results on ProMed

undesirable contexts. For example, if the string

“man” appears in an answer key as a victim, one

instance of “man” may refer to the actual vic-

tim in an event sentence, while another instance

of “man” may occur in a non-event context (e.g.,

background information) or may refer to a com-

pletely different person.

We report three evaluation metrics in our exper-

iments: precision (P), recall (R), and F-score (F),

where recall and precision are equally weighted.

For the Naı̈ve Bayes classifier, the natural thresh-

old for distinguishing between positive and nega-

tive classes is 0.5, but we also evaluated this clas-

sifier with thresholds of 0.7 and 0.9 to see if we

could effect a recall/precision trade-off. Tables 1

and 2 present the results of our three baseline sys-

tems. The NB classifier performs comparably to

AutoSlog-TS and Semantic Affinity on most event

roles, although a threshold of 0.90 is needed to

reach comparable performance on ProMed. The

relatively low numbers across the board indicate

that these corpora are challenging, but these re-

sults suggest that our plausible role-filler recog-

nizer is competitive with other existing IE sys-

tems. In Section 4.4 we will show how our unified

IE model compares to these baselines. But before

that (in the next section) we evaluate the quality of

the second component of our IE system: the sen-

tential event recognizer.

4.3 Sentential Event Recognizer Models

The sentential event recognizer is one of the core

contributions of this research, so in this section we

evaluate it by itself, before we employ it within the

unified framework. The purpose of the sentential

event recognizer is to determine whether a sen-

tence is discussing a domain-relevant event. For

our data sets, the classifier must decide whether a

sentence is discussing a terrorist incident (MUC-

4) or a disease outbreak (ProMed). Ideally, we

want such a classifier to operate independently

from the answer keys and the extraction task per

se. For example, a terrorism IE system could be

designed to extract only perpetrators and victims

of terrorist events, or it could be designed to ex-

tract only targets and locations. The job of the sen-

tential event recognizer remains the same: to iden-

tify sentences that discuss a terrorist event. How to

train and evaluate such a system is a difficult ques-

tion. In this section, we present two approaches

that we explored to generate the training data: (a)

using the IE answer keys, and (b) using human

judgements.

4.3.1 Sentence Annotation via Answer Keys

We have argued that the event relevance of a sen-

tence should not be tied to a specific set of event

roles. However, the IE answer keys can be used

to identify some sentences that describe an event,

because they contain an answer string. So we can

map the answer strings back to sentences in the

source documents to automatically generate event

sentence annotations.6 These annotations will be

noisy, though, because an answer string can appear

in a non-event sentence, and some event sentences

may not contain any answer strings. The alterna-

tive, however, is sentence annotations by humans,

which (as we will discuss in Section 4.3.2) is chal-

lenging.

4.3.2 Sentence Annotation via Human

Judgements

For many sentences there is a clear consensus

among people that an event is being discussed. For

example, most readers would agree that sentence

(1) below is describing a terrorist event, while sen-

6A similar strategy was used in previous work (Patward-
han and Riloff, 2007) to generate a test set for the evaluation
of a relevant region classifier.



Evaluation on Answer Keys Evaluation on Human Annotations
Event Non-Event Event Non-Event

Acc Pr Rec F Pr Rec F Acc Pr Rec F Pr Rec F
MUC-4 (Terrorism)

A
n
s NB .80 .57 .55 .56 .86 .87 .87 .81 .46 .60 .52 .91 .85 .88

SVM .80 .68 .42 .52 .84 .93 .88 .83 .55 .44 .49 .88 .91 .90
H
u
m NB .82 .64 .48 .55 .85 .92 .88 .85 .56 .57 .57 .91 .91 .91

SVM .79 .64 .41 .50 .83 .91 .87 .84 .62 .51 .56 .90 .91 .91

ProMed (Disease Outbreaks)

A
n
s NB .75 .62 .61 .61 .81 .82 .82 .72 .43 .58 .50 .86 .77 .81

SVM .74 .78 .31 .44 .74 .95 .83 .76 .51 .26 .35 .80 .92 .86

H
u
m NB .73 .61 .46 .52 .77 .86 .81 .79 .56 .57 .56 .87 .86 .86

SVM .70 .62 .32 .42 .73 .89 .81 .79 .62 .42 .50 .84 .90 .87

Table 3: Sentential Event Recognizers Results (5-fold Cross-Validation)

Evaluation on Human Annotations
Event Non-Event

Acc Pr Rec F Pr Rec F
NB .83 .50 .70 .58 .94 .86 .90
SVM .89 .83 .39 .53 .89 .98 .94

Table 4: Sentential Event Recognizer Results for

MUC-4 using 1300 Documents for Training

tence (2) is not. However it is difficult to draw a

clear line. Sentence (3), for example, describes an

action taken in response to a terrorist event. Is this

a terrorist event sentence? Precisely how to define

an event sentence is not obvious.

(1) Al Qaeda operatives launched an at-

tack on the Madrid subway system.

(2) Madrid has a population of about

3.2 million people.

(3) City officials stepped up security in

response to the attacks.

We tackled this issue by creating detailed an-

notation guidelines to define the notion of an

event sentence, and conducting a human annota-

tion study. The guidelines delineated a general

time frame for the beginning and end of an event,

and constrained the task to focus on specific inci-

dents that were reported in the IE answer key. We

gave the annotators a brief description (e.g., mur-

der in Peru) of each event that had a filled answer

key in the data set. They only labeled sentences

that discussed those particular events.

We employed two human judges, who anno-

tated 120 documents from the ProMed test set,

and 100 documents from the MUC-4 test set. We

asked both judges to label 30 of the same docu-

ments from each data set so that we could compute

inter-annotator agreement. The annotators had an

agreement of 0.72 Cohen’s κ on the ProMed data,

and 0.77 Cohen’s κ on the MUC-4 data. Given

the difficulty of this task, we were satisfied that

this task is reasonably well-defined and the anno-

tations are of good quality.

4.3.3 Event Recognizer Results

We evaluated the two sentential event recognizer

models described in Section 3.2 in two ways:

(1) using the answer key sentence annotations for

training/testing, and (2) using the human annota-

tions for training/testing. Table 3 shows the re-

sults for all combinations of training/testing data.

Since we only have human annotations for 100

MUC-4 texts and 120 ProMed texts, we performed

5-fold cross-validation on these documents. For

our classifiers, we used the Weka (Witten and

Frank, 2005) implementation of Naı̈ve Bayes and

the SVMLight (Joachims, 1998) implementation

of the SVM. For each classifier we report overall

accuracy, and precision, recall and F-scores with

respect to both the positive and negative classes

(event vs. non-event sentences).

The rows labeled Ans show the results for mod-

els trained via answer keys, and the rows labeled

Hum show the results for the models trained with

human annotations. The left side of the table

shows the results using the answer key annotations

for evaluation, and the right side of the table shows

the results using the human annotations for evalua-

tion. One expects classifiers to perform best when

they are trained and tested on the same type of

data, and our results bear this out – the classifiers

that were trained and tested on the same kind of

annotations do best. The boldfaced numbers rep-

resent the best accuracies achieved for each do-

main. As we would expect, the classifiers that are

both trained and tested with human annotations

(Hum) show the best performance, with the Naı̈ve

Bayes achieving the best accuracy of 85% on the



PerpInd PerpOrg Target Victim Weapon
P R F P R F P R F P R F P R F

AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .49 .54 .51 .38 .44 .41
Sem Affinity .48 .39 .43 .36 .58 .45 .56 .46 .50 .46 .44 .45 .53 .46 .50
NB (baseline) .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
GLACIER

NB/NB .90 .39 .59 .47 .33 .51 .40 .39 .72 .51 .52 .54 .53 .47 .55 .51
NB/SVM .40 .51 .58 .54 .34 .45 .38 .42 .72 .53 .55 .58 .56 .57 .53 .55
NB/SVM .50 .66 .47 .55 .41 .26 .32 .50 .62 .55 .62 .36 .45 .64 .43 .52

Table 5: Unified IE Model on MUC-4

MUC-4 texts, and the SVM achieving the best ac-

curacy of 79% on the ProMed texts.

The recall and precision for non-event sentences

is much higher than for event sentences. This clas-

sifier is forced to draw a hard line between the

event and non-event sentences, which is a difficult

task even for people. One of the advantages of our

unified IE model, which will be described in the

next section, is that it does not require hard deci-

sions but instead uses a probabilistic estimate of

how “event-ish” a sentence is.

Table 3 showed that models trained on human

annotations outperform models trained on answer

key annotations. But with the MUC-4 data, we

have the luxury of 1300 training documents with

answer keys, while we only have 100 documents

with human annotations. Even though the answer

key annotations are noisier, we have 13 times as

much training data.

So we trained another sentential event recog-

nizer using the entire MUC-4 training set. These

results are shown in Table 4. Observe that using

this larger (albeit noisy) training data does not ap-

pear to affect the Naı̈ve Bayes model very much.

Compared with the model trained on 100 manu-

ally annotated documents, its accuracy decreases

by 2% from 85% to 83%. The SVM model, on

the other hand, achieves an 89% accuracy when

trained with the larger MUC-4 training data, com-

pared to 84% accuracy for the model trained from

the 100 manually labeled documents. Conse-

quently, the sentential event recognizer models

used in our unified IE framework (described in

Section 4.4) are trained with this 1300 document

training set.

4.4 Evaluation of the Unified IE Model

We now evaluate the performance of our unified IE

model, GLACIER, which allows a plausible role-

filler recognizer and a sentential event recognizer

to make joint decisions about phrase extractions.

Tables 5 and 6 present the results of the unified

Disease Victim
P R F P R F

AutoSlog-TS .33 .60 .43 .36 .49 .41
Sem Affinity .31 .49 .38 .41 .47 .44
NB (baseline) .34 .59 .43 .47 .39 .43
GLACIER

NB/NB .90 .41 .61 .49 .38 .52 .44
NB/SVM .40 .31 .66 .42 .32 .55 .41
NB/SVM .50 .38 .54 .44 .42 .47 .44

Table 6: Unified IE Model on ProMed

IE model on the MUC-4 and ProMed data sets.

The NB/NB systems use Naı̈ve Bayes models for

both components, while the NB/SVM systems use

a Naı̈ve Bayes model for the plausible role-filler

recognizer and an SVM for the sentential event

recognizer. As with our baseline system, we ob-

tain good results using a threshold of 0.90 for our

NB/NB model (i.e., only NPs with probability ≥
0.90 are extracted). For our NB/SVM models, we

evaluated using the default threshold (0.50) but ob-

served that recall was sometimes low. So we also

use a threshold of 0.40, which produces superior

results. Here too, we used the Weka (Witten and

Frank, 2005) implementation of the Naı̈ve Bayes

model and the SVMLight (Joachims, 1998) imple-

mentation of the SVM.

For the MUC-4 data, our unified IE model us-

ing the SVM (0.40) outperforms all 3 baselines

on three roles (PerpInd, Victim, Weapon) and

outperforms 2 of the 3 baselines on the Target

role. When GLACIER outperforms the other sys-

tems it is often by a wide margin: the F-score

for PerpInd jumped from 0.43 for the best base-

line (Sem Affinity) to 0.54 for GLACIER, and the

F-scores for Victim and Weapon each improved

by 5% over the best baseline. These gains came

from both increased recall and increased precision,

demonstrating that GLACIER extracts some infor-

mation that was missed by the other systems and

is also less prone to false hits.

Only the PerpOrg role shows inferior per-

formance. Organizations perpetrating a terrorist



event are often discussed later in a document, far

removed from the main event description. For ex-

ample, a statement that Al Qaeda is believed to

be responsible for an attack would typically ap-

pear after the event description. As a result, the

sentential event recognizer tends to generate low

probabilities for such sentences. We believe that

addressing this issue would require the use of dis-

course relations or the use of even larger context

sizes. We intend to explore these avenues of re-

search in future work.

On the ProMed data, GLACIER produces results

that are similar to the baselines for theVictim role,

but it outperforms the baselines for the Disease

role. We find that for this domain, the unified IE

model with the Naı̈ve Bayes sentential event rec-

ognizer is superior to the unified IE model with

the SVM classifier. For the Disease role, the F-

score jumped 6%, from 0.43 for the best base-

line systems (AutoSlog-TS and the NB baseline)

to 0.49 for GLACIERNB/NB. In contrast to the

MUC-4 data, this improvement was mostly due

to an increase in precision (up to 0.41), indicating

that our unified IE model was effective at elimi-

nating many false hits. For the Victim role, the

performance of the unified model is comparable

to the baselines. On this event role, the F-score

of GLACIERNB/NB (0.44) matches that of the best

baseline system (Sem Affinity, with 0.44). How-

ever, note that GLACIERNB/NB can achieve a 5%

gain in recall over this baseline, at the cost of a 3%

precision loss.

4.5 Specific Examples

Figure 2 presents some specific examples of ex-

tractions that are failed to be extracted by the

baseline models, but are correctly identified by

GLACIER because of its use of sentential evidence.

Observe that in each of these examples, GLACIER

correctly extracts the underlined phrases, in spite

of the inconclusive evidence in the local contexts

around them. In the last sentence in Figure 2, for

example, GLACIER correctly makes the inference

that the policemen in the bus (which was traveling

on the bridge) are likely the victims of the terrorist

event. Thus, we see that our system manages to

balance the influence of the two probability com-

ponents to make extraction decisions that would

be impossible to make by relying only on the local

phrasal context. In addition, the sentential event

recognizer can also help improve precision by pre-

THE MNR REPORTED ON 12 JANUARY THAT HEAVILY
ARMED MEN IN CIVILIAN CLOTHES HAD INTERCEPTED
A VEHICLE WITH OQUELI AND FLORES ENROUTE FOR
LA AURORA AIRPORT AND THAT THE TWO POLITICAL
LEADERS HAD BEEN KIDNAPPED AND WERE REPORTED
MISSING.

PerpInd: HEAVILY ARMED MEN

THE SCANT POLICE INFORMATION SAID THAT THE
DEVICES WERE APPARENTLY LEFT IN FRONT OF THE TWO
BANK BRANCHES MINUTES BEFORE THE CURFEW BEGAN
FOR THE 6TH CONSECUTIVE DAY – PRECISELY TO
COUNTER THE WAVE OF TERRORISM CAUSED BY DRUG
TRAFFICKERS.

Weapon: THE DEVICES

THOSE WOUNDED INCLUDE THREE EMPLOYEES OF THE
GAS STATION WHERE THE CAR BOMB WENT OFF AND
TWO PEOPLE WHO WERE WALKING BY THE GAS STATION
AT THE MOMENT OF THE EXPLOSION.

Victim: THREE EMPLOYEES OF THE GAS STATION

Victim: TWO PEOPLE

MEMBERS OF THE BOMB SQUAD HAVE DEACTIVATED
A POWERFUL BOMB PLANTED AT THE ANDRES AVELINO
CACERES PARK, WHERE PRESIDENT ALAN GARCIA WAS
DUE TO PARTICIPATE IN THE COMMEMORATION OF THE
BATTLE OF TARAPACA.

Victim: PRESIDENT ALAN GARCIA

EPL [POPULAR LIBERATION ARMY] GUERRILLAS BLEW
UP A BRIDGE AS A PUBLIC BUS, IN WHICH SEVERAL
POLICEMEN WERE TRAVELING, WAS CROSSING IT.

Victim: SEVERAL POLICEMEN

Figure 2: Examples of GLACIER Extractions

venting extractions from non-event sentences.

5 Conclusions

We presented a unified model for IE that balances

the influence of sentential context with local con-

textual evidence to improve the performance of

event-based IE. Our experimental results showed

that using sentential contexts indeed produced bet-

ter results on two IE data sets. Our current model

uses supervised learning, so one direction for fu-

ture work is to adapt the model for weakly super-

vised learning. We also plan to incorporate dis-

course features and investigate even wider con-

texts to capture broader discourse effects.
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